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Abstract: This study evaluates the modified areal weighting by control zones method (MAW-CZ) often involved in 
downscaling social data from a large spatial mesh, to a smaller mesh. This method has been extensively used in liter-
ature but the impossibility, until recently, of accessing individual data makes it so that it has not been evaluated.  In 
this study it is applied to two case studies, Toulouse and Grenoble-Alpes Metropoles, using the census INSEE data at 
the IRIS scale and the building islet or topographical reference units (RSU) scale. The study found that 27.2% of RSUs 
in the Toulouse metropolis and 21.9% in the Grenoble-Alpes metropolis are inhabited, with mean populations of 122 
and 116 residents, and maximum populations of 2,429 and 6,451 residents, respectively in 2018. The chosen 
downscaling approach introduces small errors for small and medium-sizedRSUs. For example, 94%, 78%, and 72% of 
RSUs of <100, 101–255, and 256–500 inhabitants, respectively, are correctly classified by the modified areal weighting 
by control zones method in the Toulouse Metropole. However, there are significant differences for the most popu-
lated RSUs (the performance decreases to 60% for RSUs with more than 500 inhabitants), with this category having a 
representativeness of 8.4% and 7.2% of the total number of inhabited RSUs in the Toulouse and Grenoble-Alpes 
metropoles, respectively. The spatial distribution of the biased RSUs are nevertheless homogeneous throughout the 
two territories. These discrepancies are due to both the upscaling/downscaling methods used and the nature of the 
data (points in the upscaling and polygons in the downscaling). 

Keywords: Downscaling social data; upscaling social data; aggregation; disaggregation; mesh; spatial analysis; topo-
graphical reference unit (RSU) 

 

Highlights: 

● Population is downscaled from the census IRIS scale, to the RSU scale. 
● Modified areal weighted by control zones approach is evaluated. 
● Downscaling performs for small and medium-sized RSUs, <500 inhabitants with errors between 2 and 28%. 
● RSUs with >500 inhabitants — where errors reach 40% — represent <10% of inhabited RSUs in both case studies. 

 

1. Introduction 

Today, public policymakers, urban planners, and researchers are challenged with integrating social and environmental data that have diverse 
spatial resolutions. One example is evaluations of human vulnerability to the various impacts of climate change at finer scales, such as at the 
neighborhood or islet level in urbanized areas. In recent years, environmental data have benefited from increasingly fine resolutions, thanks to 
advances in spatial imaging and numerical modeling. These data also enjoy a high level of open access, exemplified by initiatives such as the 
European Union’s Copernicus program and various national research projects. However, because of the confidentiality status of social data, pub-
licly available variables required for vulnerability studies are often aggregated into larger statistical spatial units. These units tend to be too coarse 
to be effectively combined with and analyzed alongside environmental spatial data. 

To address this issue, social data are often spatially downscaled. Downscaling looks to transfer social data to a new framework while main-
taining the quality of the information. This process requires the use of auxiliary data to ensure an effective transfer. Consequently, the choices of 
the alternative control dataset and the methodological framework are essential to estimation of the disaggregation quality and the relevance of 
the destination scale. 

The process of the spatial transfer of coarser social data, to finer spatial scales, such as geographic data, administrative boundaries, or 
statistical units, often encounters issues of harmonization across different spatial supports (Fotheringham & Sachdeva, 2022). The geometric 
dimension of geographic data can lead to statistical biases when social data are transferred to this type of framework. This phenomenon is referred 
to as the change of support problem (COSP) (Arbia, 1989). 
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Two types of COSPs have been identified. The first, ecological bias inference, is a concept that comes from environmental sciences (King et 
al., 2004) and refers to errors related to downscaling methodologies. The second is the modifiable areal unit problem (MAUP). The effect of this 
COSP depends on how the data are upscaled to the chosen spatial unit. The choice of aggregation level can alter interpretations of spatial analyses 
and the relationships between variables (Fotheringham & Wong, 1991; Openshaw et al., 1979; Openshaw, 1981; Pivano et al., 2015; Robinson, 
1950; Wong, 2004). This issue is prevalent across numerous disciplines that utilize data aggregation (e.g., geosciences, environmental sciences, 
geography, and ecology) and resembles the ecological inference problem, where individual patterns are inferred from group data. The type of 
spatial data input also has an impact on the effectiveness of the methods used for the spatial modeling of social data (Louvet, 2015; Monteiro, 
2018; Plumejeaud, 2010). 

It is important to consider these effects when evaluating the upscaling and downscaling quality. According to Louvet, three potential ap-
proaches to reduce the effects of COSPs are (1) utilizing individual data with access to confidential sources, (2) adapting statistical methods to 
account for MAUPs, and (3) assessing the sensitivity to MAUPs based on the spatial partitioning of the results. 

In the context of this paper, the first proposition is used to evaluate the MAUP effect and the statistical sensitivity of downscaling French 
social data. In France, as in many countries in Europe and abroad, social data (e.g., fiscal or health data and census data) are not freely accessible 
at the individual level. Nevertheless, the French National Institute for Statistics and Economic Studies (INSEE) provides multiple types of open 
social data on its website; these include census data (https://www.insee.fr/en/accueil) aggregated into larger statistical units, called Ilots de Re-
groupement de l'Information Statistique (IRIS). This is the smallest sub-municipal unit used for public statistical analyses in France. The IRIS frame-
work divides communes, particularly those with at least 10,000 residents, and includes many communes with populations between 5,000 and 
10,000 (INSEE, 2016). Despite their utility, IRIS units do not always correspond to real-world territorial or urban planning needs, including difficult 
informed urban development decisions, such as addressing heat islands or establishing local services. Moreover, the IRIS boundaries often do not 
align with other spatial scales used in environmental studies, such as urban overheating, where the spatial unit of the physical phenomena is finer. 
Such studies frequently rely on finer topographical reference units (RSUs) based on urban and architectural morphology (Bocher et al., 2018; 
Masson, 2015), which better suit the realities of urban and environmental planning. 

The use of individual social data, as proposed by Louvet (2015), is now possible in France because social and physical data at individual and 
local levels have become more easily accessible to researchers via the Secure Data Access Center (CASD), a new controlled means of access under 
conditions of confidentiality (https://www.casd.eu/). INSEE provides some of these sensitive data to researchers and data scientists, including 
official population data, ensuring statistical confidentiality in line with the Data Protection Act and under the supervision of the French Data 
Protection Authority (CNIL). 

This paper uses these individual social data as a set of control data to test and reproduce the modified areal weighted by control zones 
method (Goodchild, 1993; Langford, 1992; Plumejeaud, 2010). This approach has been used in the literature (Goodchild, 1993; Langford, 1992; 
Nordhaus, 2002; Plumejeaud, 2010) without being evaluated for statistical and spatial discrepancies and biases caused by transferring data from 
one grid (IRIS) to another (in our case, the RSU). 

This paper is organized as follows. In Section 2, the case studies and the utilized datasets are described. In Section 3, the theoretical frame-
works of the transfer methods (upscaling and downscaling) are presented and briefly reviewed. For the downscaling, the modified areal weighted 
by control zones method is explained in detail. Then, in Section 4, the application of the transfer method to the inhabitant number is described. 
In Section 5, to estimate the sensitivityand the reliability of the modified areal weighted by control zones method, the results of the disaggregation 
(from the IRIS scale to the RSU scale) are compared with the individual scale data aggregated on the RSU mesh. 

2. Case studies and datasets 

2.1. Case studies: The Toulouse and Grenoble-Alpes metropoles 

To evaluate the specificities and generality of the results, two case studies of the Toulouse and Grenoble-Alpes metropoles are analyzed 
(Figure 1). Toulouse, the capital of the district of Occitanie with a population of 520,896 in 2024, is located in southwestern Occitanie in the south 
of France. It is the fourth most populous city in France (after Paris, Marseille, and Lyon) and is the largest municipality of the Toulouse Metropole. 
With 37 municipalities and close to 0.8 million inhabitants in an area of approximately 460 km2, this intermunicipality contains more than 57% of 
the population in the Haute-Garonne district.  

Grenoble, located in the eastern Rhône-Alpes region of France, is smaller than Toulouse, with 156,064 inhabitants in 2024. The Grenoble-
Alpes Metropole includes 49 municipalities in the Isère district and has a population of 450,000 and a surface area of 546 km2. 

Despite differences in their population sizes, these two metropoles have been the subject of a number of studies in urban climatology and 
urban planning (Rome, 2021; Hidalgo, 2023). The available studies and data, if at the appropriate spatial resolution, should make it possible to 
observe and compare statistical trends in the social vulnerability of these areas with respect to climate change. 

2.2. Datasets for territorial analyses of the two intermunicipalities 

The datasets used in this study enable comparison of population estimates derived from spatial disaggregation methods with georefer-
enced reference data at the RSU level. This study uses individual social data as a benchmark to evaluate the modified areal weighting by control 
zones method (Goodchild, 1993; Langford, 1992; Plumejeaud, 2010), a technique applied in French research projects (e.g., MApUCE, PAENDORA) 
but rarely assessed for statistical and spatial biases caused by data transfers between grids (from IRIS to RSU). 

 
• To conduct this evaluation, we utilize high-resolution geographic, urban morphology, and socio-demographic data for the Toulouse and 

Grenoble urban agglomeration. Spatial data are obtained from open-access platforms, while individual socio-demographic data are 
accessed through secure data portals (CASD). Table 1 and the following list summarize the main data sources: Geographic files of 
communes in 2020 from the Institut Géographique National (IGN). The 2018 INSEE data correspond to the geography on January 1, 
2020. These data consist of polygon shapefiles. 

https://www.eurogeojournal.eu/
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• Geographical indicators produced with GeoClimate tool for the RSU mesh and buildings. GeoClimate is an opensource geospatial 
processing tool for environmental and climate studies (https://github.com/orbisgis/geoclimate/wiki). Using vector-based inputs, the 
workflow uses the Open Street Map database or the French BD Topo database. These data consist of FlatGeobuf polygons. 
 

 

Figure 1. Maps of the Toulouse and Grenoble-Alpes metropoles. 

• FIDELI data for 2018 (demographic files on dwellings and individuals). This database is special because it contains data at the individual 
level, including information from tax authorities on taxes and built-up properties. This provides a better understanding of the housing 
stock and the demographics of residents. The FIDELI files describe the characteristics of dwellings (e.g., the surface area, location, and 
lifts) and the households living in these dwellings (e.g., marital status and income) and identifies individuals by their location 
(https://www.insee.fr/fr/metadonnees/source/serie/s1019). These data consist of point shapefiles. 

Table 1. Number of features for each data source for the two metropoles.  

 Toulouse Grenoble-Alpes 

Number of IRIS units (INSEE/IGN data) 1 254 201 

RSU (GeoClimate) 2 24,827 19,048 

Buildings (GeoClimate) 355,517 130,946 

Inhabitants (FIDELI) 774,971 445,376 
1 Here, IRIS indicates the smallest sub-municipal statistical unit available for public statistical analyses in France. 
2 RSU indicates the topographical reference unit. 

 
Together, these datasets provide a basis for evaluating population estimates derived from spatial disaggregation methods against reference 

data at the RSU level. The following section details the transfer methods and data processing techniques used in this study.  

3. Transfer method and data processing 

3.1. Downscaling and upscaling operations 

Two main operations are used in this study: downscaling and upscaling. Downscaling, or disaggregation, enables data to be redistributed 
onto smaller spatial units (points or polygons), entirely contained within the source and target units, by creating a smaller common spatial denom-
inator between the two supports. Upscaling, or aggregation, combines data from source units into target units based on a geometric inclusion 
rule. This operation is generally applied after disaggregation to estimate a variable on a misaligned grid or when moving from a smaller to larger 
scale (Plumejeaud et al., 2010; Vignes et al., 2013). 

3.2. Different disaggregation methods 

https://www.eurogeojournal.eu/
https://doi.org/10.48088/ejg.n.tou.16.2.268.285
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Various approaches have been developed to address spatial disaggregation (Patil et al., 2024; Do, 2015), primarily focused on proxy data-
based methods, machine learning techniques, and model-based geostatistical methods (Louvet, 2015; Monteiro, 2018; Zhang, 2022). Proxy meth-
ods rely on ancillary variables such as land use, road density, night-time lights, while machine learning and geostatistical models capture spatial 
patterns and correlations through predictive modeling and spatial interpolation. These methods are often used to disaggregate demographic, 
socio-economic, and environmental data.  
Among these approaches, simple areal weighting is the most basic technique. It assumes a uniform distribution within the source zones and 
reallocates values proportionally based on the area of overlap with the target geometries, which can vary in size and shape. This method is easy 
to implement using GIS software such as QGIS and requires minimal data, but it often results in imprecise spatial distributions.  

A variation of this method, the modified areal weighting using control zones (MAW-CZ), introduces constraints based on predefined zonal 
structures to improve spatial accuracy. This method extends on the principle of simple area weighting by incorporating an auxiliary variable to 
better control the data transfer process (Do, 2015; Flowerdew, 1992). The auxiliary variable must satisfy three criteria: (1) it should be spatially 
correlated with the variable to be transferred; (2) its distribution or spatial dispersion should be known in both the source and target zones; and 
(3) it should be spatially similar to the source mesh. 
While this method significantly improves the quality of the transferred information, finding an auxiliary variable that is both spatially correlated 
and shares the same distribution as the variable to be transferred can be challenging. To overcome some of these limitations, the MAW-CZ method 
proposes a refined proxy-based approach that leverages an intermediate control zone to guide the disaggregation process more effectively. De-
spite its conceptual simplicity and potential advantages—particularly in contexts with limited ancillary data—the MAW-CZ method has received 
relatively little systematic evaluation in the spatial disaggregation literature. Few empirical studies have thoroughly assessed its performance, 
which highlights the need for further investigation, such as that undertaken in this study (Patil et al., 2024; Monteiro et al., 2018). 
In this study, the MAW-CZ method is applied as an alternative to simple areal weighting. Known information about the variable (support A) is first 
transferred to an intermediate zone (support C) or to geographical objects, such as buildings, before estimating the value of the variable in the 
target zone (support B) (Goodchild et al., 1993; Langford et al., 1992). This method involves creating two zones, the source and target zones, along 
with an intermediate zone or object called the control zone. By downscaling through the control zone followed by upscaling, it allows for better 
estimations of inhabitants or other variables. Figure 2 illustrates this data transfer process, as proposed by Plumejeaud et al. (2010).  

 

 

Figure 2. Support transformation data transfer (as proposed by Plumejeaud et al., 2010). IRIS indicates the larger statistical unit (the smallest sub-
municipal unit available for public statistical analyses in France), and RSU indicates the smaller topographical reference unit. 

3.3. Choice of support mesh 

In this study, the information to be transferred is represented by a social variable: the inhabitant count. The transfer of the population or 
inhabitant count occurs from a source zone where this information is known (the IRIS unit; Figure 3a) to a target zone where this information is 
unknown (the RSU; Figure 3b). The RSU is a partitioning of the urban territory based on the Delaunay triangulation (Bocher et al., 2018). It offers 
a more precise mesh than the IRIS statistical division and is often used as a reference spatial division in French environmental studies, in particular, 
in urban climate studies. The RSU geometry was computed for each case study using the GeoClimate open source software. IRIS and RSU corre-
spond to two non-aligned grids, which means that they do not overlap (see the yellow surfaces in Figure 3b) and that there are no common rules 
for their construction. 

https://www.eurogeojournal.eu/
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The choice of the RSU target source (support B) is motivated by its good adaptation to architectural and urban morphology compared 
with a regular grid mesh. As explained in Figure 2, IRIS units, the source support (support A), are large statistical units, comparable to large 
neighborhoods. RSUs, conversely, are small units representing a city islet (a building block surrounded by streets). Because of this difference in 
size, intermediate regular polygon building entities (support C), which are included in the target support, are needed. 

 

  

(b) (a) 

Figure 3. (a) Larger-scale IRIS units and (b) finer-scale RSUs for the Toulouse Metropole. 

3.4. Data processing scheme 

This study evaluates the accuracy of the modified areal weighting by control zones method when disaggregating the inhabitant count from 
the IRIS scale to the RSU scale using the methodology proposed in Figure 2. Accordingly, using basic statistical approaches, the results of this 
disaggregation are compared with the aggregation of individual-level data from the FIDELI database to the RSUs (Figure 4); these data are consid-
ered as being the most accurate data available. 

 

 

Figure 4. Description of the data processing performed in this study to evaluate the downscaling of social data from a coarse mesh to a finer mesh. 

https://www.eurogeojournal.eu/
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To analyze the sensitivity of the results, the individual data are used in two steps. First, the FIDELI database populations are aggregated 
onto the RSU mesh, the target support for the analysis. Next, the process for transferring the population count presented in Figure 2 is started by 
first aggregating the FIDELI database inhabitants onto the IRIS mesh and then disaggregating them via the modified areal weighting by control 
zones method using the building scale as the intermediate support before aggregating them again at the RSU scale for comparison with the cited 
upscaled results. 

3.5. Upscaling the FIDELI database population to the RSU and IRIS meshes 

Using the population variable from the FIDELI database, the population can be summed within each RSU mesh: 

𝑝𝑜𝑝𝑅 = ∑(𝑝𝑜𝑝𝐹⊂𝑅), (1) 

where 𝑝𝑜𝑝𝐹 is the FIDELI population and 𝑝𝑜𝑝𝑅is the population by RSU. 
 

The same calculation is applied to the aggregation of the FIDELI data to the IRIS mesh: 

𝑝𝑜𝑝𝐼 = ∑(𝑝𝑜𝑝𝐹⊂𝐼), (2) 

where 𝑝𝑜𝑝𝐼is the population by IRIS unit. 
 

The aggregation of the population estimates by building for each RSU is calculated as: 

𝑝𝑜𝑝𝐵𝑝𝑜𝑝𝑅 = ∑(𝑝𝑜𝑝𝐵⊂𝑅), (3) 

where 𝑝𝑜𝑝𝐵 is aggregated for each RSU. 
 

3.6. Downscaling the IRIS population to the RSU mesh 

Following Plumejeaud (2010), a population potential was created using building footprints as control zones. Two variables extracted from 
the GeoClimate toolbox (building area and number of floors) were used to estimate the building developed surface (𝑆𝑑𝑒𝑣𝐵), defined as the 
footprint area multiplied by the number of floors, representing the total constructed surface. 

The number of floors per building(𝑛𝑏𝑓𝐵) is estimated using building elevation and average floor height, depending on the building’s con-
struction period. This developed surface is then used to weight the disaggregation of IRIS-level population data (𝑝𝑜𝑝𝐼)onto building objects, in 
order to estimate the number of inhabitants per building (𝑝𝑜𝑝𝐵). Finally, the building-level population can be aggregated at the block level, 
allowing an estimation of population per RSU (𝑝𝑜𝑝𝑅). 𝑆𝑑𝑒𝑣𝐵 

The formula used to calculate the building developed surface is: 

 𝑆𝑑𝑒𝑣𝐵 = 𝑎𝑟𝑒𝑎𝐵 × 𝑛𝑏𝑓𝐵, (4) 

where 𝑎𝑟𝑒𝑎𝐵 indicates the area of building 𝐵 and 𝑛𝑏𝑓𝐵 indicates the number of floors in building 𝐵. 
The population by building (𝑝𝑜𝑝𝐵)can then be estimated using the population in each IRIS unit (𝑝𝑜𝑝𝐼)and the building developed surface 

𝑆𝑑𝑒𝑣𝐵: 

(𝑝𝑜𝑝𝐵)(𝑝𝑜𝑝𝐼)𝑆𝑑𝑒𝑣𝐵𝑝𝑜𝑝𝐵 = 𝑝𝑜𝑝𝐼 × 𝑆𝑑𝑒𝑣𝐵 ∑ 𝑆𝑑𝑒𝑣𝐵𝐼⁄ , (5) 

Finally, as detailed in Section 3.5, the building-level population is aggregated to the RSU mesh to estimate the population per RSU (𝑝𝑜𝑝𝑅): 

𝑝𝑜𝑝𝐵𝑝𝑜𝑝𝑅 = ∑(𝑝𝑜𝑝𝐵⊂𝑅), (6) 

where the sum is taken over all buildings 𝐵 contained within each RSU 𝑅. 

4. Results 

In this section, a descriptive statistical analysis is conducted to identify the central tendencies, variabilities, and any potential imbalances or 
anomalies within the data sample. This step is important to ensure a correct interpretation of the subsequent results and to contextualize more 
complex analyses. Next, to ensure the robustness and generalizability of the modified areal weighting by control zones method, the results ob-
tained from the upscaling and downscaling approaches are compared in Figure 4. This allows to verify the method’s ability to maintain its perfor-
mance across different subsets of the data while minimizing the risk of overfitting. Then, a bias analysis can enable the differences between the 
model performances for the different classes of inhabitant counts to be understood. 

Statistical computations, including spatial statistical analyses, were carried out using R 4.3.1 (CRAN), a free software environment for statis-
tical computing. Spatial data exploration and map production were performed using QGIS 3.28, an open-source software developed by the Open 
Source Geospatial Foundation (OSGeo). 

4.1. Descriptive statistics of the two case studies 

The downscaling method to the RSU level was applied to both the Toulouse and Grenoble-Alpes metropoles. According to the upscaling 
method, 27.2% and 21.9% of the RSUs in the Toulouse and Grenoble-Alpes metropoles, respectively, are inhabited (Table 2).  

 

https://www.eurogeojournal.eu/
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Table 2. Summary of the RSUs by metropole. 

 Toulouse Grenoble-Alpes 

 Upscaling Downscaling Upscaling Downscaling 

Total RSUs 24,827 19,048 

Inhabited RSUs 6746 (27.2%)  6302 (25.4%) 4164 (21.9%) 4197 (22%) 

Uninhabited RSUs 18,081 (72.8%) 18,525 (74.6%) 14,884 (78.1%) 14,851 (78%) 

 
The analysis is applied to a sample of RSUs that have at least one inhabitant according to both the upscaling and downscaling methods to 

illustrate, if an RSU has two inhabitants according to the upscaling method but no inhabitant according to the downscaling method, this RSU 
cannot be included in the sample. The final sample contains 5,993 RSUs in the Toulouse Metropole and 3,661 RSUs in the Grenoble-Alpes 
Metropole. 

 
(a) 

 

  

(b) 

 
 

Figure 5. Spatial distributions of (a) inhabited and uninhabited RSUs and (b) residential RSUs in the Toulouse Metropole. (For the Grenoble-Alpes 
Metropole, see Figure A.1. in appendix) 

https://www.eurogeojournal.eu/
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Figures 5 (and Figure A.1 in appendix) illustrate the spatial distributions of the inhabited and uninhabited RSUs for the two case studies. 
Figure 5a shows the contrast between RSUs with and without inhabitants, while Figure 5b shows the contrast between RSUs with and without 
residential buildings. 

4.2. Statistical Distribution 

A significant positive correlation was observed between population size and total developed surface area at the IRIS level in both metropol-
itan areas. Specifically, the Toulouse metropolitan area exhibited a correlation coefficient of r = 0.85 (t(252) = 26.17, p < 2.2 × 10⁻¹⁶; 95% CI: [0.82–
0.88]), while the Grenoble metropolitan area showed r = 0.80 (t(195) = 18.64, p < 2.2 × 10⁻¹⁶; 95% CI: [0.74–0.85]), indicating a strong and robust 
linear association in both cases. 

To compare the statistical distributions resulting from the upscaling and downscaling methods, log-transformed density curves and histo-
grams were produced for both metropolitan areas (Figure 6). These visualizations reveal a high degree of overall similarity between the distribu-
tions obtained using each approach. 

 

 

(b) (a) 

Figure 6. Density curves and histograms of the inhabitants in the RSUs of the (a) Toulouse and (b) Grenoble-Alpes metropoles using the downscal-
ing (left) and upscaling (right) methods. 

Statistical tests further supported these observations. In Toulouse, the Student’s t-test comparing the mean population per RSU between 
aggregated and disaggregated datasets showed no significant difference (t(5992) = 1.47, p = 0.14; mean difference = 1.23; 95% CI: [-0.41, 2.87]). 
However, the Kolmogorov–Smirnov (KS) test indicated a slight but statistically difference in distribution shapes (D = 0.025; p = 0.042). A similar 
pattern was observed in Grenoble, where the t-test again revealed no significant difference in means (t(3660) = 0.51, p = 0.61; mean difference = 
0.71; 95% CI: [-2.01, 3.43]), whereas the KS test showed a more pronounced significant difference in distribution (D = 0.045; p = 0.0012). 

Table 3 presents statistical indicators for both methods and metropolitan areas.  
Average population per RSU is nearly identical between the two approaches: 122 vs. 121 in Toulouse, and 116 vs. 115 in Grenoble. However, 

extreme values, particularly in the Grenoble metropolitan area, exhibit greater variability depending on the method used (Figure 7). 

Table 3. Statistical indicators of the upscaling and downscaling methods for the Toulouse and Grenoble-Alpes metropoles. 

Statistical Indicators 
Toulouse Grenoble-Alpes 

Upscaling Downscaling Upscaling Downscaling 

Minimum 1 1.1 1 1 

1st quartile 25 26.5 12 13.1 

Median 61 62.9 48 50.4 

Mean 122 120.8 116 115.2 

3rd quartile 148 148.3 145 146.7 

Maximum 2429 2363.8 6451 3291.7 

Standard deviation 178 170 207 185 

Variance 31,862 28,958 43,046 34,258 
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(a) (b) 

Figure 7. Boxplots without (left) and with (right) outliers for the upscaling (aggregation-AG; grey boxplots) and downscaling (disaggregation-DG; 
blue or green boxplots) methods for the (a) Toulouse (TM) and (b) Grenoble-Alpes (GAM) metropoles 

Furthermore, Figure 7 and Table 4 highlight the presence of statistical units (RSUs) considered outliers in terms of population, representing 
approximately 7% of RSUs in each metropolitan area, regardless of the method employed. (see Table A.1 in appendix). 

 Table 4. Number of RSUs with the number of inhabitants considered as outliers1. 

Method Toulouse Grenoble-Alpes 

Upscaling 8.4% (504/5993) 7.2% (265/3661) 

Downscaling 7.9% (474/5993)   7.1% (258/3661) 
1  In this case, the outliers are the RSU with a large population compared to the average. 

 
In summary, although mean population values per RSU do not differ significantly between the upscaling and downscaling methods, the 

Kolmogorov–Smirnov test reveals subtle but significant differences in distributional form, especially in Grenoble. These results underscore the 
importance of a comprehensive evaluation that considers both central tendency and distributional characteristics when comparing spatial dis-
aggregation methods. Further analyses of bias, absolute error, and spatial structure are presented in the following sections. 

4.3. Error and bias analysis of the MAW-CZ method 

To assess the accuracy of the modified areal weighting by control zones (MAW-CZ) method, we compared the estimated number of popu-
lation obtained through downscaling to the reference values produced via upscaling. Two discrepancy indicators were calculated at the RSU level: 
the absolute difference and the relative deviation (percentage), using the following formulas: 

𝑑𝑟 = 𝐷𝑟 − 𝑈𝑟 , and 𝑟𝑑𝑟 =
| 𝐷𝑟−𝑈𝑟|

𝑈𝑟
× 100 (7) 

where 𝐷𝑟is the population estimate from downscaling, and 𝑈𝑟the reference value from upscaling of inhabitants calculated by the upscaling, 
for 𝐷𝑟the 𝑟𝑡ℎRSU. For example, 𝐷64= 132 and 𝑈64= 120, then 𝑑64= 12 and 𝑟𝑑64= 10%.  

Figure 8 presents the distribution of absolute differences across RSUs in Toulouse and Grenoble-Alpes. Most RSUs show relatively small 
errors, but some, especially those with high population densities, display larger discrepancies. 

 

  

(a) (b) 

Figure 8. Absolute error per RSU (Dr−UrD_r - U_rDr−Ur) in the Toulouse (a) and Grenoble-Alpes (b) metropoles. 
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Descriptive statistics of the relative deviation are presented in Table 5. Average errors are relatively high: 58% in Toulouse and 63% in 
Grenoble-Alpes. However, median errors are substantially lower (23% and 29%, respectively), indicating a positively skewed distribution. These 
error measures offer a global assessment of model accuracy across all RSUs. However, to provide a more interpretable view, we grouped RSUs by 
error thresholds (Table 6). This allows identification of zones with high, moderate, or low accuracy. For instance, only 24% of RSUs have a deviation 
below 10%, and over 40% exceed 30%. 

Table 5. Statistical indicators of the relative deviation (%). 

Statistical Indicators Toulouse Grenoble-Alpes 

Minimum 0 0 

1st quartile 11 13  

Median 23 29 

Mean 58 63 

3rd quartile 46 57 

Maximum >100% >100% 

Standard deviation 555 268 

Variance 3081 720 

 
To better describe the heterogeneity in model performance, RSUs were grouped by relative error thresholds (Table 6). This classification is 

purely descriptive and does not correspond to spatially contiguous zones. It provides an overview of how accuracy varies across the urban areas: 
for instance, only 24% of RSUs have a relative deviation below 10%, while over 40% exceed a 30% error rate. A non-negligible share of RSUs (10.1% 
in Toulouse and 16.0% in Grenoble-Alpes) present deviations greater than 80%. Outliers (RSUs with errors well above the mean) represent 6.8% 
of the sample in Toulouse and 8.9% in Grenoble-Alpes (see Table A.1 in Appendix). 

Table 6. Percentage of RSUs under different thresholds. 

Threshold Toulouse Grenoble-Alpes 

Less than 5% 12.0% 10.2% 

Between 5% and 10% 11.8% 10.2%  

Between 10% and 15% 11.4% 9.9% 

Between 15% and 30% 25.2% 21.9% 

Between 30% and 50% 17.5% 18.7% 

Between 50% and 80% 12.0% 13.1% 

More than 80% 10.1% 16.0% 

 
These figures reflect a spatially heterogeneous pattern of errors, which is further illustrated in Figure 9. Panel (a) displays the downscaled 

population estimates in Toulouse, while panel (b) maps the relative error rates using natural breaks (Jenks classification). Most RSUs display low 
errors, especially in central areas, but larger deviations are observed in peripheral zones or areas with unusual urban morphology. Equivalent maps 
for the Grenoble-Alpes Metropole are provided in Appendix (Figures A.3 and A.4). 

These results confirm that the downscaling method broadly preserves the spatial structure of population distribution. However, discrepan-
cies at the local level remain, particularly in areas with complex urban forms or atypical population densities. This spatial heterogeneity in the 
error distribution highlights the need for further spatial diagnostics. In the next section, global and local spatial autocorrelation metrics are used,  
Moran’s I and LISA indicators) to assess whether the spatial patterns derived from the disaggregation process are consistent with those obtained 
through aggregation approach. 

4.4. Spatial autocorrelation of population and errors patterns 

The Moran's I index and Local Indicators of Spatial Association (LISA) were used to determine whether the disaggregation process preserves 
the spatial structure of the aggregated population data at the reference statistical unit (RSU) level (Moran, 1950; Anselin, 1995). Moran's I assesses 
global spatial autocorrelation, while LISA detects local clusters and outliers. These measures provide spatial diagnostics that complement the 
previously seen error metrics, helping to determine whether the disaggregated data reproduces the spatial organization of the aggregated refer-
ence data. Two types of spatial weight matrices were used: the Queen contiguity matrix, which defines neighbors based on shared edges or 
corners, and the k-nearest neighbors (k-NN) matrix, which links each RSU to its nearest neighbors based on distance. These two configurations 
capture distinct spatial relationships, morphological (Queen) and metric (k-NN), allowing evaluation of whether disaggregation reproduces the 
spatial population patterns observed in the aggregated data. 

Specifically, Moran's I provides a global measure of spatial autocorrelation, reflecting the degree to which population values are spatially 
clustered across all RSUs. LISA complements this analysis by identifying local spatial clusters and outliers, offering a finer understanding of how 
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well the local spatial structure is preserved. Together, these indices provide a spatially explicit comparison that goes beyond descriptive statistics 
and helps determine whether the disaggregated data retains the spatial coherence of the reference dataset. 
 

(a) 

 

  

(b) 

 
 

Figure 9. Spatial distribution of the number of inhabitants in the Toulouse Metropole by RSU when downscaling with the modified areal weighting 
by control zones method (a) and map of the error rate (natural thresholds) compared with the reference dataset obtained by upscaling the FIDELI 
data (b). (For the Grenoble-Alpes Metropole, see Figure A.2. in appendix) 

Table 7 summarizes Moran's I values for both cities and methods. For Toulouse, Moran's I using the Queen matrix is 0.04 for aggregation 
and slightly lower at 0.03 for disaggregation, while using the k-NN matrix, the values are 0.12. These results indicate a strong similarity in global 
spatial autocorrelation between the reference and disaggregated data, suggesting that the MAW-CZ method effectively preserves the spatial 
structure in Toulouse. In Grenoble, Moran's I values are relatively higher overall, reflecting a stronger spatial autocorrelation in the population 
distribution. Using the Queen matrix, Moran's I is almost similar, being 0.16 in the aggregated data and 0.14 after disaggregation. With the k-NN 
matrix, Moran's I shows a slight increase from 0.20 to 0.26, indicating that the disaggregation process may slightly enhance spatial autocorrelation 
when considering a fixed number of nearest neighbors. These results suggest that the global spatial structure of the population remains compa-
rable between the disaggregated and reference datasets, particularly in Toulouse. The slightly higher spatial autocorrelation in Grenoble reflects 
its more compact and topographically constrained urban form. Therefore, the MAW-CZ method, when used for disaggregation, seems to preserve 
the global spatial organization of the population distribution. 
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Table 7. Moran’s I on population values (RSU level) 

City Method Moran’s I (Queen) Moran’s I (k-nearest neighbors) 

Toulouse 
 

Upscaling 0.04 0.12 

Downscaling 0.03 0.12 

Grenoble 
 

Upscaling 0.16 0.20 

Downscaling 0.14 0.26 

 
To evaluate whether the disaggregation process introduces spatially structured biases, we computed Moran's I not only on the population 

values but also on the error distributions between the disaggregated and reference datasets (table 8). We used Moran's I on the absolute error to 
detect whether areas of higher inaccuracy are spatially concentrated. A low Moran's I on errors would indicate a random distribution of inaccura-
cies, suggesting no spatial bias introduced by the method. In contrast, a significant positive autocorrelation would imply that the method performs 
poorly in specific spatial contexts, revealing spatial weaknesses in the disaggregation model.  

Table 8. Moran’s I on absolute errors values (RSU level) 

City Moran’s I (abs. errors) p-value 

Toulouse 0.01 0.36 

Grenoble 0.14 <0.0001 

 
In Toulouse, errors appear to be spatially random, suggesting that the disaggregation does not introduce spatial bias. However, in Grenoble, 

the significant Moran's I value indicates that errors tend to cluster slightly spatially, particularly in morphologically complex or heterogeneous 
areas. This suggests that the method may under- or overestimate population in specific urban contexts, where the proxy used (e.g., developed 
building surface) may not fully capture local demographic variability. 

While Moran's I captures global structure, LISA (Anselin, 1995) identifies local spatial clusters such as high-population RSUs surrounded by 
high values (High-High) or outlier patterns (High-Low, Low-High). Table 9 compares LISA classifications between the aggregated and disaggregated 
datasets to assess the method's ability to replicate localized population structures (For the maps of LISA, see Figure A.5 in appendix). 

Table 9. LISA cluster classification (% of inhabited RSUs) 

City Method High-High(%) High-Low (%) Low-High(%) Low-Low(%) Non-significant(%) 

Toulouse Upscaling 0.59 15.85 17.64 1.45 64.67 

  Downscaling 0.76 16.80 17.10 1.10 63.64 

Grenoble Upscaling 0.72 11.17 14.84 1.03 72.24 

  Downscaling 0.41 10.20 13.63 0.95 74.82 

 
Although the overall distribution of cluster types is similar between the two datasets, a substantial proportion of RSUs fall into spatial outlier 

categories (High-Low and Low-High), indicating localized mismatches in population clustering. This finding corroborates previous research (e.g., 
Mennis, 2015; Eichhorn, 2020), which demonstrates that while dasymetric methods are effective in capturing broad spatial patterns, they may 
face challenges in accurately representing finer local spatial variations, particularly in areas where proxy data provide limited information. 

4.5. Classifying RSU categories 

Finally, an additional comparative approach was employed by classifying RSUs into six categories based on population thresholds to evaluate 
the effectiveness of the downscaling method. These classes were initially generated using the K-means clustering algorithm on the number of 
inhabitants and then manually adjusted to enhance the interpretability and visual coherence of the resulting maps. 

Tables 10 and 11 are confusion matrices of the population according to the upscaling and downscaling methods. The diagonals of the con-
fusion matrices, in bold, show the percentage of RSUs correctly classified by the downscaling method. 

For the cluster with 1–92 inhabitants, 94% of the RSUs were classified in the same cluster according to the downscaling method in Grenoble-
Alpes metropole. The downscaling method appears to classify the RSUs correctly based on the population categories. The percentages on the 
diagonals are higher than 50% for all categories in both metropoles. 

These confusion matrices allow to calculate an indicator of accuracy of the downscaling method, defined as the percentage of RSUs correctly 
classified into their respective population categories. Specifically, accuracy (Acc) is calculated as the ratio of correctly classified RSUs to the total 
number of RSUs, multiplied by 100: 

https://www.eurogeojournal.eu/
https://doi.org/10.48088/ejg.n.tou.16.2.268.285


                                                                                                                                                                                      European Journal of Geography 2025, 16(2) ● p. 280 
 

https://doi.org/10.48088/ejg.n.tou.16.2.268.285  

𝐴𝑐𝑐 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑆𝑈 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑆𝑈
× 100, (8) 

The calculated accuracies are: 

𝐴𝑐𝑐𝑇𝑀 =
5229

5993
× 100 = 87.25%, 

 

(9) 
 

which corresponds to 87.25% accuracy in Toulouse Metropole; 

𝐴𝑐𝑐𝐺𝐴𝑀 =  
3198

3661
× 100 = 87.35%, (10) 

which corresponds to 87.35% accuracy in Grenoble-Alpes Metropole. These high accuracy rates confirm the method’s ability to reliably 
classify RSUs according to population categories, reinforcing the notion that the fine-scale spatial distribution is broadly well reproduced. This 
finding complements the previous results obtained with Moran’s I and LISA indices, which showed good preservation of both global and local 
spatial structure in the disaggregated data. Indeed, the consistency between accurate RSU classification and preserved spatial autocorrelation 
suggests that the method maintains not only population quantities but also their spatial distribution — a critical aspect for reliable and detailed 
geographic analyses. 

Table 10. Confusion matrix for the population in the Toulouse Metropole. The bold elements show the percentage of RSUs correctly classified by 
the downscaling method. 

Upscaling/Downscaling 1–100 100–260 260–545 545–1,025 1,025–2,364 2,364–2,500 Number of RSUs Number of inhabitants 

1–100 1 94% 2 6.2% 0.2% <0.1% 0% 0% 3,888 148,041 

100–260 13% 78% 8.6% 0.1% 0% 0% 1,389 227,336 

260–545 2.3% 21% 73% 3.1% 0% 0% 521 189,780 

545–1,025 1.3% 4.5% 26% 65% 3.8% 0% 156 113,089 

1,025–2,364 0% 5.3% 0% 21% 74% 0% 38 50,203 

2,364–2,500 0% 0% 0% 0% 0% 100% 1 2,429 

Number of RSUs 3,835 1,444 551 128 35 0 5,993  

Number of inhabitants 151,328.7 233,697.6 197,399.8 94,308.21 46,771.5 0   

Overall 
Accuracy (%) 

       87.25 

21-100 : RSUs category with 1 to 100 inhabitants 

3 94% of the RSU from the category 1 to 100 inhabitants are correctly classified by the modified areal weighting by control zones method in Toulouse metropole. 

Table 11. Confusion matrix for the population in the Grenoble-Alpes Metropole. The bold elements show the percentage of RSUs correctly classi-
fied by the downscaling method. 

Upscaling/Downscaling 1–92 92–265 265–620 620–1,792 1,792–3,292 3,292–6,500 Number of RSUs Number of inhabitants 

1–92 94% 5.7% <0.1% 0% 0% 0% 2,340 64,037 

92–265 14% 76% 9.5% 0.3% 0% 0% 884 142,581 

265–620 3.4% 20% 73% 3.7% 0% 0% 350 130,842 

620–1,792 1.2% 1.2% 19% 79% 0% 0% 84 75,850 

1,792–3,292 0% 0% 0% 0% 100% 0% 2 4,743 

3,292–6,500 0% 0% 0% 0% 0% 100% 1 6,451 

Number of RSUs 2,343 876 357 82 3 0 3,661  

Number of inhabitants 68,886.4 139,653.5 132,436.4 73,959.3 7,982.3 0   

Overall 
Accuracy (%) 

       87.35 
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5. Discussion 

The methodological and spatial implications of downscaling census data from larger spatial units (IRIS) to finer scales (residential spatial 
units, or RSUs) were analyzed using the Modified Areal Weighting by Control Zones (MAW-CZ) method. The objective was to assess the method’s 
ability to downscale population distributions at high spatial resolution while preserving key statistical and spatial properties of the original source. 

Three complementary analytical steps were undertaken to evaluate the performance of the MAW-CZ method in the context of comparing 
aggregated and downscaled data derived from the same method. First, a descriptive statistical analysis was conducted to examine central tenden-
cies and dispersion of population values at the finer RSU scale. This preliminary assessment confirmed the sparsity of inhabited units—27.2% of 
RSUs in the Toulouse and 21.9% in Grenoble—and comparable mean populations of 122 and 116 inhabitants per RSU, respectively, providing a 
reference baseline for evaluating the method’s ability to reproduce plausible local population distributions. 

Second, analysis of global spatial autocorrelation, measured by Moran’s I, revealed an almost complete absence of spatial autocorrelation 
with the MAW-CZ method, except for a slight signal detected in Grenoble (0.143 with Queen contiguity). A Moran’s I value close to zero indicates 
an almost random spatial distribution of values, suggesting that the method does not generate artificial clustering or marked dispersion effects in 
the downscaled data. The analysis of Local Indicators of Spatial Association (LISA) revealed a predominance of High-Low and Low-High clusters, 
indicating substantial local spatial heterogeneity characterized by sharp contrasts between adjacent units. This pattern suggests that the MAW-
CZ disaggregation method successfully preserves the complexity of the underlying spatial structure, maintaining localized discontinuities rather 
than producing artificially smoothed or homogenized distributions. 

Finally, the classification bias analysis by population classes provides important nuance to the previous results. It shows that while the 
method generally reproduces central and spatial trends well, its accuracy decreases for the most densely populated units. For example, in Tou-
louse, 94% of RSUs with fewer than 100 inhabitants are correctly classified, 78% for RSUs between 101 and 255 inhabitants, 72% for those between 
256 and 500 inhabitants, while accuracy drops to 60% for RSUs with more than 500 inhabitants. However, this limitation affects only a small 
proportion of RSUs—8.4% in Toulouse and 7.2% in Grenoble—and does not exhibit spatially localized bias, indicating overall stability of the method 
across the territory. This step thus refines understanding of the optimal application conditions of the MAW-CZ method, while highlighting its 
limitations. 

6. Conclusions 

This study proposes a statistical assessment of the Modified Areal Weighting by Control Zones (MAW-CZ) method, applied to the disaggre-
gation of population data aggregated at the IRIS mesh to spatial units close to the block (RSU) of finer resolution. By using individual-level data 
from the FIDELI dataset, aggregated at the IRIS mesh, this work extends previous research by Plumejeaud (2010) and Mennis (2015), testing the 
robustness of the method when applied to existing aggregated census data such as those published by INSEE (Plumejeaud, 2010; Louvet, 2015). 

The results indicate that MAW-CZ produces reliable estimates in sparsely to moderately populated RSUs. However, its accuracy tends to 
decline in highly dense units, likely due to increased spatial heterogeneity and the effects of the Modifiable Areal Unit Problem (MAUP) (Monteiro 
et al., 2018; Fotheringham & Sachdeva, 2022). Nonetheless, the generally homogeneous distribution of classification errors suggests that no major 
localized spatial bias is introduced. These findings also highlight the limitations of the method in morphologically complex or heterogeneous urban 
areas, where the proxies used (e.g., built-up area) may not accurately reflect local demographic variability. 

Despite these limitations, the results confirm the relevance of the MAW-CZ method for disaggregating census data aggregated at coarser 
spatial units, while emphasizing the importance of accounting for MAUP effects in spatial analysis (Openshaw, 1981; Fotheringham & Sachdeva, 
2022). The method offers a more cost effectively approach to producing a more accurate representation of population distribution in urban 
environments, particularly when combined with detailed morphological and architectural urban units. 

The successful application of this method to French social data suggests its potential transferability to other national contexts with statistical 
units comparable to IRIS. This opens up possibilities for international comparison and collaborative research in urban planning and environmental 
studies. Furthermore, the integration of tools such as Geoclimate, based on globally available OpenStreetMap data (Bocher, 2021), enhances the 
ability to link urban indicators, social data, and spatial models. 

This work thus contributes to ongoing efforts to more finely integrate social and environmental data. It provides methodological and empir-
ical insights useful to researchers, urban planners, and public decision-makers engaged in addressing the challenges of urban and climate dynamics 
at the local scale. 
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Appendix A 

Table A.1. Number of outliers for the difference between the methods. 

Method Toulouse Grenoble-Alpes 

Outliers 410/5993* 329/3661 

*410/5993 (6.8%) of RSUs have a value of the number of inhabitants that is considered to be a outlier far from the average. 
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(a) (b) 

Figure A.1. Spatial distributions of (a) inhabited and uninhabited RSUs and (b) residential RSUs in the Grenoble-Alpes. 

  

(a) (b) 

Figure A.2. Spatial distribution of the number of inhabitants in the Toulouse Metropole by RSU when downscaling with the modified areal 
weighting by control zones method (a) and map of the error rate (natural thresholds) compared with the reference dataset obtained by upscaling 
the FIDELI data (b). 
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Figure A.3. Map of the raw error between the two methods in the Toulouse Metropole. 

 

Figure A.4. Map of the raw error between the two methods in the Grenoble-Alpes Metropole. 
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(a) (b) 

Figure A.5. LISA Cluster Typologies for Downscaled Population Data in the Toulouse Metropole (a) and the Grenoble-Alpes Metropole (b) 
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