Vol. 14 No. 2 (2023):
Research Article

Assessment of the environmental quality of Lake Skadar and its urban surroundings in Montenegro

Dragan Burić
Department of Geography, University of Montenegro, Danila Bojovica bb, 81400 Nikšic, Montenegro
Ivan Mijanović
Department of Geography, University of Montenegro, Danila Bojovica bb, 81400 Nikšic, Montenegro
Miroslav Doderović
Department of Geography, University of Montenegro, Danila Bojovica bb, 81400 Nikšic, Montenegro
Jovan Mihajlović
Faculty of Geography, University of Belgrade, Studentski trg 3/3, 11000 Belgrade, Serbia
Goran Trbić
Department of Geography, Faculty of Science and Mathematics, Banja Luka, Bosnia and Herzegovina
Locations of the stations included in the analysis

Published 2023-06-23

Keywords

  • WQI,
  • Lake Skadar,
  • PM10,
  • Podgorica,
  • Bar,
  • Montenegro,
  • water quality,
  • air quality
  • ...More
    Less

How to Cite

Burić, Dragan, Ivan Mijanović, Miroslav Doderović, Jovan Mihajlović, and Goran Trbić. 2023. “Assessment of the Environmental Quality of Lake Skadar and Its Urban Surroundings in Montenegro”. European Journal of Geography 14 (2):76-87. https://doi.org/10.48088/ejg.d.bur.14.2.076.087.
Received 2023-04-23
Accepted 2023-06-23
Published 2023-06-23

Abstract

Lake Skadar on the Balkan Peninsula faces many ecological challenges. The lake is located in the border area between Montenegro and Albania and its ecosystem interacts with important and highly populated urban centres such as Podgorica and Bar. Despite the crucial role the lake plays in the sustainability of the ecosystem and the health of the population, there is a lack of environmental quality assessment and data-based analysis. Therefore, the aim of this study is to assess both the water quality of Lake Skadar and the air pollution in Podgorica and Bar in the period from 2011 to 2018. To assess water quality, the Water Quality Index (WQI) model, i.e. the SWQI method, was used, which was calculated based on 10 parameters of physicochemical and microbiological characteristics of water from 9 hydrological stations (oxygen saturation, biochemical oxygen consumption for 5 days, ammonium ions, pH, total nitrogen oxides, orthophosphates, suspended solids, temperature, electrical conductivity and coliform bacteria). In addition, air quality in the two cities was assessed using timeseries of PM10 concentrations. The results showed that the water quality of Lake Skadar was of good to high quality (WQI 79-95), while the air quality in Podgorica and Bar was a serious public health problem, especially in the cold seasons in Podgorica (i.e. the average seasonal and daily PM10 concentrations were often > 40 and > 50 µg/m3). These results are of great practical importance for environmental management and support decision makers in applying certain environmental protection measures and strategies.

 

Highlights:

  • Frequent high daily concentrations of PM10 (above 50 µg/m3) in Podgorica and Bar endanger public health.
  • Increasing anthropogenic pressure in the area of Lake Skadar and its surroundings.
  • Environmental protection in Montenegro must be ensured through the application of integrative environmental and spatial planning measures.

 

Downloads

Download data is not yet available.

References

  1. Adams, K., Greenbaum, D. S., Shaikh, R., van Erp A. M., & Russell, A. G. (2015). Particulate matter components, sources, and health: Systematic approaches to testing effects. Journal of the Air & Waste Management Association, 65(5), 544–558. https://doi.org/10.1080/10962247.2014.1001884
  2. Babić, G., Vuković, M., Voza, D., Takić, L., & Mladenović-Ranisavljević I. (2019). Assessing Surface Water Quality in the Serbian Part of the Tisa River Basin. Polish Journal of Environmental Studies, 28(6), 4073–4085. https://doi.org/10.15244/pjoes/95184
  3. Berila, A., & Isufi, F. (2021). Mapping summer SUHI and its impact on the environment using GIS and Remote Sensing techniques: A case study on Municipality of Prishtina (Kosovo). European Journal of Geography, 12(3), 113-129. https://eurogeojournal.eu/index.php/egj/article/view/111
  4. Bharti, N., & Katyal, D. (2011). Water quality indices used for surface water vulnerability assessment. International journal of environmental sciences, 2(1), 154–173. https://www.researchgate.net/profile/Deeksha-Katyal/publication/285977924
  5. Boyacioglu, H. (2009). Development of a water quality index based on a European classification scheme. Water Sa, 33(1), 101–106. https://doi.org/10.4314/wsa.v33i1.47882
  6. Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: a review. Sustainable Water Resources Management, 2, 161–173. https://doi.org/10.1007/s40899-015-0014-7
  7. Burić, D., Ducić, V., & Mihajlović, J. (2014). The climate of Montenegro: Modificators and types - part two. Bulletin of the Serbian Geographical Society, 94(1), 73–90. https://doi.org/10.2298/GSGD1401073B
  8. Burić, D., & Doderović, M. (2019). Precipitation, Humidity and Cloudiness in Podgorica (Montenegro) during the Period 1951–2018. Geographica Pannonica, 23(4), 233–244. https://doi.org/10.5937/gp23-23582
  9. Burić, D., & Doderović, M. (2020). Projected temperature changes in Kolašin (Montenegro) up to 2100 according to EBU-POM and ALADIN re-gional climate models. IDŐJÁRÁS, 124(4), 427–445. http://doi.org/10.28974/idojaras.2020.4.1
  10. Burić, D., & Doderović, M. (2021). Changes in temperature and precipitation in the instrumental period (1951-2018) and projections up to 2100 in Podgorica (Montenegro). International Journal of Climatology, 41(S1), 133–149. https://doi.org/10.1002/joc.6671
  11. Burić, D., Doderović, M., Dragojlović, J., & Penjišević, I. (2021). Extreme weather and climate events in Montenegro – case study, November 2019. Weather. 76(11), 383–388. https://doi.org/10.1002/wea.3885
  12. Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., … Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6
  13. Doderović, M., Burić, D., & Popović, Lj. (2018). Hidrologija kopna. Univerzitet Crne Gore (eng. Land hydrology, University of Montenegro). ISBN: 978-86-7664-155-0
  14. Doderović, M., Mijanović, I., Burić, D., & Milenković, M. (2020). Assessment of the water quality in the Moraca River basin (Montenegro) using water quality index. Bulletin of the Serbian Geographical Society, 100(2), 67–81. https://doi.org/10.2298/GSGD2002067D
  15. Doderović, M., Burić, D., Mijanović, I., & Premović, M. (2021). Analysisof River Water and Air Pollution—Pljevlja as a “Hot Spot” of Montenegro. Sustainability, 13, 5229. https://doi.org/10.3390/su13095229
  16. Doderović, M., Burić, D., Ducić, V., & Mijanović, I. (2020). Recent and Future Air Temperature and Precipitation Changes in the mountainous nort of Montenegro. Journal of the Geographical Institute ''Jovan Cvijić'', SASA, 70(3), 189–201. https://doi.org/10.2298/IJGI2003189D
  17. Drasovean, R., & Murariu, G. (2021). Water Quality Parameters and Monitoring Soft Surface Water Quality Using Statistical Approaches. In: Prom-ising Techniques for Wastewater Treatment and Water Quality Assessment Moujdin A. and Summers J. K. (Ed.). IntechOpen, 1–17. https://doi.org/10.5772/intechopen.97372
  18. Durlević, U. (2020). The analysis of the quality of surface water of Danube in the Republic of Serbia for 2018. Zbornik radova - Geografski fakultet Univerziteta u Beogradu, 68, 53-70. https://doi.org/10.5937/zrgfub2068053D
  19. EU. (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community ac-tion in the field of water policy. Official Journal of the European Communities, L327, 1–72. http://data.europa.eu/eli/dir/2000/60/oj
  20. EU. (2008). Directive 2008/50/EC of the European Parliament and of the council of 21 May 2008 on ambient air quality and cleaner air for Europe. Official Journal of the European Union. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32008L0050#d1e89-30-1
  21. EPA. (2019). Informacija o stanju životne sredine za 2018. Agencija za zaštitu prirode i životne sredine Crne Gore, pp. 337. https://epa.org.me/wp-content/uploads/2019/08/Informacija-o-stanju-zivotne-sredine-2018.pdf
  22. EPA. (2023). Monthly Reports for the Period 2011-2018 (downloaded data for PM10 concentration). Environmental Protection Agency of Monte-negro. Available online: https://epa.org.me/mjesecni-izvjestaji-o-kvalitetu-vazduha/
  23. Garofalo, D., & Ferreira, M. (2022). Regionalization of water quality parameters based on the landscape characteristics of small ungauged basins: A study carried out in south-eastern Brazil. European Journal of Geography, 13(1), 047-068. https://doi.org/10.48088/ejg.d.gar.13.1.47.68
  24. Gartsiyanova, K., Varbanov, M., Kitev, A., Genchev, S., & Georgieva, S. (2020). Territorial features and dynamics in the water quality change in the Topolnitsa and Luda Yana rivers. Journal of the Bulgarian Geographical Society, 43, 9–15. https://geography.bg/publication/magazines/item/473-vol43-2020-2
  25. Georgescu, P., Moldovanu, S., Iticescu, C., Calmuc M., Calmuc V., Topa, C., & Moraru, L. (2023). Assessing and forecasting water quality in the Danube River by using neural network approaches. Science of The Total Environment, 879, 162998. https://doi.org/10.1016/j.scitotenv.2023.162998
  26. Habbeb, M. G. H., Sulyman, M. H. A., & Jumaah, H. J. (2022). Modeling Water Quality Index using Geographic Information Systems and Weighted Arithmetic Index in Kirkuk, Iraq. Pollution Research, 41(1), 323-327. https://doi.org/10.53550/PR.2022.v41i01.047
  27. Hamed , H. H., Jumaah, H. J., Kalantar, B., Ueda, U., Saeidi, V., Mansor, S., & Khalaf, Z. A. (2021). Predicting PM2.5 levels over the north of Iraq using regression analysis and geographical information system (GIS) techniques. Geomatics, Natural Hazards and Risk, 21 (1), 1778-1796. https://doi.org/10.1080/19475705.2021.1946602
  28. Hadžiablahović, S. (2018). The Diversity of the Flora and Vegetation of Lake Skadar/Shkodra. In: Pešić,V., Karaman, G. & Kostianoy, A. (eds). The Skadar/Shkodra Lake Environment. The Handbook of Environmental Chemistry, Springer, Cham, 80, 203-238. https://doi.org/10.1007/698_2018_236
  29. Horvat, M., Horvat, Z., & Pastor, K. (2021). Multivariate analysis of water quality parameters in Lake Palic, Serbia. Environmental Monitoring and Assessment, 193, 410. https://doi.org/10.1007/s10661-021-09195-8
  30. IPCC. (2021). Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth As-sessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press. 2021.
  31. Iseni, G. (2018). The impact of pollution on the quality of the Lake Ohrid water and the Barbus meridionalis petenyi Heckel. International Journal of Avian & Wildlife Biology, 3(2), 102–104. https://doi.org/10.15406/ijawb.2018.03.00065
  32. IHMSM. (2023). Annual Reports for the Period 2011-2018 (downloaded data for the water quality of Skadar lake). Institute of Hydrometeorology and Seismology of Montenegro. Available online: http://www.meteo.co.me/page.php?id=56
  33. Jakovljević, D. (2012). Serbian and Canadian water quality index of Danube river in Serbia in 2010. Journal of the Geographical Institute ''Jovan Cvijić'', SASA, 62, 1–18. https://doi.org/10.2298/IJGI1203001J
  34. Jumaah, H. J., Ameen, M. H., Mahmood, S., & Jumaah, S. J. (2023). Study of air contamination in Iraq using remotely sensed Data and GIS. Geocarto International, 38(1), 2178518. https://doi.org/10.1080/10106049.2023.2178518
  35. Josimov-Dunđerski, J., Savić, R., Grabić, J., & Blagojević, B. (2016). Water quality of the Danube River in the Pannonian part of its flow through Serbia. Annales Agronomy, Faculty of Agriculture, University of Novi Sad, 40(1), 8–14. http://polj.uns.ac.rs/sites/default/files/letopis-naucnih-radova/2Josimov-Dundjerski%20et%20al.%20O2016%20Ann%20Agron.%2040%2C%208-14.pdf
  36. Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015). Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, 475–483. http://dx.doi.org/10.1016/j.atmosenv.2015.08.087
  37. Kolarević, S., Kračun-Kolarević, M., Jovanović, J., Ilić, M., Paunović, M., …, & Vuković-Gačić, B. (2019). Microbiological Water Quality of Rivers in Montenegro. The Handbook of Environmental Chemistry, 93, 135–155. https://doi.org/10.1007/698_2019_420
  38. Lumb, A., Halliwell, D., & Sharma, T. (2006). Application of CCME Water Quality Index to Monitor Water Quality: A Case Study of the Mackenzie River Basin, Canada. Environmental Monitoring and Assessment, 113, 411–429. https://doi.org/10.1007/s10661-005-9092-6
  39. Markou, D. (2022). Exploring spatial patterns of environmental noise and perceived sound source dominance in urban areas. : Case study: the city of Athens, Greece. European Journal of Geography, 13(2), 060-078. https://doi.org/10.48088/ejg.d.mar.13.2.060.078
  40. Marcheva, Z., Kotsev, T., Tchorbadjieff, A., & Stoyanova, V. (2023). Modeling of arsenic dynamics in groundwater of а river floodplain contami-nated with mine tailings: Ogosta River case, NW Bulgaria. Journal of the Bulgarian Geographical Society, 48, 3-14. https://doi.org/10.3897/jbgs.e99206
  41. Mititelu-Ionuș, O. (2010). Water Quality Index - Assessment method of the Motru river water quality (Oltenia, Romaia). University of Craiova, Series: Geography, 13, 74–83. https://www.researchgate.net/publication/281863374
  42. Milijasević-Joksimović, D., Gavrilović, B., & Lovic-Obradović, S. (2018). Application of the water quality index in the Timok River basin (Serbia). Journal of the Geographical Institute ''Jovan Cvijić'', SASA, 68(3), 333–344. https://doi.org/10.2298/IJGI180610007M
  43. Mladenović-Ranisavljević, I. I., & Žerajić, S. A. (2017). Comparison of different models of water quality index in the assessment of surface water quality. International Journal of Environmental Science and Technology, 15, 665–674. https://doi.org/10.1007/s13762-017-1426-8
  44. Murariu, G., Iticescu, C., Murariu, A., Rosu, B., Munteanu, D., & Buruiana, D. L. (2019). Assessment of Water Quality State Dynamics Using Adap-tive Filtering Methods and Neural Networks Approaching. Case study - Danube River in Galati area. Revista de Chimie, 70(6), 1914–1919. https://doi.org/10.37358/RC.19.6.7246
  45. MONSTAT. (2011). First Results Census of Population, Households and Dwellings in Montenegro. Institute for Statistics of Montenegro, 57 pp. https://www.monstat.org/userfiles/file/popis2011/saopstenje/knjiga_prvi%20rezultati(1).pdf
  46. Naudet, C. (2022). Using “Spontaneous Geography” to reason about environmental problems. European Journal of Geography, 13(5), 045-057. https://doi.org/10.48088/ejg.c.nau.271
  47. Parween, S., Siddique, N. A., Diganta, M. T. M., Olbert, A. I., & Uddin, M. G. (2022). Assessment of urban river water quality using modified NSF water quality index model at Siliguri city, West Bengal, India. Environmental and Sustainability Indicators, 16, 100202. https://doi.org/10.1016/j.indic.2022.100202
  48. Pešić, V., Karaman, G., & Kostianoy, A. (2018a). Introduction. In: Pešić, V.,Karaman, G.&Kostianoy,A.G.(eds), The Skadar/Shkodra Lake Environ-ment. The Handbook of Environmental Chemistry, vol 80. Springer, Cham, pp. 1–10. https://doi.org/10.1007/698_2018_258
  49. Pešić, V., Karaman, G., Kostianoy, A., & Vukašinović-Pešić, V. (2018b). Conclusions: Recent Advances and the Future Prospects of the Lake Skadar/Shkodra Environment. In: Pešić, V., Karaman, G.& Kostianoy, A. (eds), The Skadar/Shkodra Lake Environment. The Handbook of Environmental Chemistry, vol 80. Springer, Cham, pp.481–500. https://doi.org/10.1007/698_2018_274
  50. Pešić, V., Kostianoy, A. G., & Soloviev, D. M. (2020). The impact of wildfires on the Lake Skadar/Shkodra environment. Ecologica Montenegrina, 37(9), 57–65. http://dx.doi.org/10.37828/em.2020.37.7
  51. Prodanova, H., & Varadzhakova, D. (2022). How individual scores affect the final expert-based assessments of ecosystem services: Range and mean scores analysis of natural heritage supply maps. European Journal of Geography, 13(4), 074-097. https://doi.org/10.48088/ejg.h.pro.13.4.074.097
  52. Rocha, F. C., Andrade, E. M., & Lopes, F. B. (2014). Water quality index calculated from biological, physical and chemical attributes. Environmental Monitoring and Assessment, 187, 4163. https://doi.org/10.1007/s10661-014-4163-1
  53. Sasakova, N., Gregova, G., Takacova, D., Mojzisova, J., Papajova, I., … & Kovacova, S. (2018). Pollution of Surface and Ground Water by Sources Related to Agricultural Activities. Frontiers in Sustainable Food Systems, 2, 1–11. https://doi.org/10.3389/fsufs.2018.00042
  54. Stoilova, S., Popova Ramova, E. L., & Stoilov, B. (2013). Prespa lake water quality and protection. Jokull Journal, 63(9), 1–5. https://www.researchgate.net/publication/283316217
  55. Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. (2016). Development of river water quality indices—A review. Environmental Monitoring and Assessment, 188, 1–29. https://doi.org/10.1007/s10661-015-5050-0
  56. Seymenov, K. (2022). Assessment of water pollution with nitrogen and phosphorus along the course of a river: A case study from Northern Bulgaria. Journal of the Bulgarian Geographical Society, 47, 35-44. https://doi.org/10.3897/jbgs.e97971
  57. Uddin, M. G., Nash, S., & Olbert, A. I. (2021). A review of water quality index models and their use for assessing surface water quality. Ecological Indicators, 122, 107218. https://doi.org/10.1016/j.ecolind.2020.107218
  58. Uddin, M. G., Nash, S., Rahman, A., & Olbert, A. I. (2022a). A comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessment. Water Research, 219, 118532. https://doi.org/10.1016/j.watres.2022.118532
  59. Uddin, M. G., Nash, S., Diganta, M., Rahman, A., & Olbert, A. I. (2022b). Robust machine learning algorithms for predicting coastal water quality index. Journal of Environmental Management, 321, 115923. https://doi.org/10.1016/j.jenvman.2022.115923
  60. Uddin, M. G., Nash, S., Rahman, A., & Olbert, A. I. (2023a). A sophisticated model for rating water quality. Science of The Total Environment, 868, 161614. https://doi.org/10.1016/j.scitotenv.2023.161614
  61. Uddin, M. G., Nash, S., Rahman, A., & Olbert, A. I. (2023b). Performance analysis of the water quality index model for predicting water state using machine learning techniques. Process Safety and Environmental Protection, 169, 808-828. https://doi.org/10.1016/j.psep.2022.11.073
  62. Uddin, M. G., Nash, S., Rahman, A., & Olbert, A. I. (2023c). Assessing optimization techniques for improving water quality model. Journal of Cleaner Production, 385, 135671. https://doi.org/10.1016/j.jclepro.2022.135671
  63. Uddin, M. G., Nash, S., Rahman, A., & Olbert, A. I. (2023d). A novel approach for estimating and predicting uncertainty in water quality index model using machine learning approaches. Water Research, 229, 119422. https://doi.org/10.1016/j.watres.2022.119422
  64. USEPA. (2009). National Lakes Assessment: A Collaborative Survey of the Nation’s Lakes. National Lakes Assessment: A Collaborative Survey of the Nation’s Lakes. U.S. Environmental Protection Agency, 1–118. https://www.epa.gov/sites/default/files/2013-11/documents/nla_newlowres_fullrpt.pdf
  65. UN. (2017). Wastewater: The Untapped Resource. The United Nations World Water Development Report 2017. https://www.unep.org/resources/publication/2017-un-world-water-development-report-wastewater-untapped-resource
  66. Veljković, N., Lekić, D., & Jovičić, M. (2008). Case study of Integrated Water Quality Management: Serbian Water Quality Index. Proceedings from XXIV Conference of the Danubian Countries on the Hydrological Forecasting and Hydrological Bases of Water Management, Slovenian National Committee for the IHP UNESCO, 171–178.
  67. Vicente, E. D., & Alves, C. A. (2018). An overview of particulate emissions from residential biomass combustion. Atmospheric Research, 199, 159–185. https://doi.org/10.1016/j.atmosres.2017.08.027
  68. Vodonos, A., Awad, Y. A., & Schwartz, J. (2018). The concentration-response between long-term PM2.5 exposure and mortality; A meta-regression approach. Environmental Research, 166, 677–689. https://doi.org/10.1016/j.envres.2018.06.021
  69. Vukašinović-Pešić, V., Blagojević, N., Savić, A., Tomić, N., & Pešić V. (2019). The Change in the Water Chemistry of the Rivers of Montenegro over a 10-Year Period. In: The Handbook of Environmental Chemistry, Springer: Cham, Switzerland, 93, 83–109. https://doi.org/10.1007/698_2019_417
  70. Walker, D., Jakovljević, D., Savić, D., & Radovanović, M. (2015). Multi-criterion water quality analysis of the Danube River in Serbia: A visualisation approach. Water Research, 79, 158–172. https://doi.org/10.1016/j.watres.2015.03.020
  71. WHO. (2017). Regional Office for Europe. Evolution of WHO air quality guidelines: past, present and future. World Health Organization. Regional Office for Europe, 32 pp. https://apps.who.int/iris/handle/10665/341912
  72. Yisa, J., & Jimoh, T. (2010). Analytical Studies on Water Quality Index of River Landzu. American Journal of Applied Sciences, 7(4), 453–458. https://doi.org/10.3844/ajassp.2010.453.458
  73. Yang, D., Ye, C., Wang, X., Lu, D., Xu, J., & Yang, H. (2018). Global distribution and evolvement of urbanization and PM2.5 (1998-2015). Atmospher-ic Environment, 182, 171–178. https://doi.org/10.1016/j.atmosenv.2018.03.053