Vol. 14 No. 4 (2023):
Research Article

OSM Sidewalkreator: A QGIS plugin for an automated drawing of sidewalk networks for OpenStreetMap

Kauê de Moraes Vestena
Federal University of Paraná: Curitiba, Paraná, Brazil
Silvana Camboim
Universidade Federal do Paraná: Curitiba, Paraná, Brazil
Bio
Daniel Rodrigues dos Santos
Federal University of Paraná: Curitiba, Paraná, Brazil
Bio
SidewalKreator Procedures Workflow

Published 2023-12-12

Keywords

  • Pedestrian Networks,
  • Geographic Information Systems,
  • Open Source Software and Data,
  • Openstreetmap,
  • Urban Mobility

How to Cite

de Moraes Vestena, Kauê, Silvana Philippi Camboim, and Daniel Rodrigues dos Santos. 2023. “OSM Sidewalkreator: A QGIS Plugin for an Automated Drawing of Sidewalk Networks for OpenStreetMap”. European Journal of Geography 14 (4):66-84. https://doi.org/10.48088/ejg.k.ves.14.4.066.084.
Received 2023-09-19
Accepted 2023-12-09
Published 2023-12-12

Abstract

Sidewalks are a relevant part of the living space in urban environments but are still rarely mapped. In recent years, the mapping of sidewalks has grown in importance among the OSM and academic communities as a matter of concern for many UN SDGs. To cover this gap, we propose a GitHub-hosted, fully open-source QGIS Plugin entitled "OSM SidewalKreator" to automatically draw the geometries of sidewalks for OSM crossings and curb crossing interfaces. The plugin workflow encompasses the steps of input area selection; data fetching, data cleaning, sidewalk geometries generation; crossings and kerbs generation; optional sidewalk splitting; and data exporting. Furthermore, the tool gives the user the capacity to have control over the process. Our tests revealed that the proposed method embodied by the plugin surpasses the manual process in many contexts, highlighting completeness, topological and thematic accuracies. We conclude that deepening, improving, and increasing the amount of open sidewalk mapping, mainly in the widely available OSM, can be a valuable asset to improve the development of accessibility and mobility worldwide.

Highlights:

  • SIdewalks and other footpaths are generally rarely mapped despite their huge importance
  • OSM SIdewalKreator QGIS PLugin is a product of the research, being a valuable support tool
  • A deep analysis compared sidewalks produced with two methods, endorsing the method’s strengths

Downloads

Download data is not yet available.

References

  1. ABEPRO. (2007). Indicadores de qualidade do ambiente para Curitiba: Uma proposta de modelo. Retrieved from https://abepro.org.br/biblioteca/enegep2007_tr680486_0573.pdf
  2. Bartzokas-Tsiompras, A., & Photis, Y. (2020). Does neighborhood walkability affect ethnic diversity in Berlin? Insights from a spatial modelling approach. European Journal of Geography, 11(1), 163–187. https://doi.org/10.48088/ejg.a.bar.11.1.163.18
  3. Bartzokas-Tsiompras, A., Photis, Y. N., Tsagkis, P., & Panagiotopoulos, G. (2021). Microscale walkability indicators for fifty-nine European central urban areas: An open-access tabular dataset and a geospatial web-based platform. Data in Brief, 36, 107048. https://doi.org/10.1016/j.dib.2021.107048
  4. Bartzokas-Tsiompras, A., Bakogiannis, E., & Nikitas, A. (2023). Global microscale walkability ratings and rankings: A novel composite indicator for 59 European city centres. Journal of Transport Geography, 111, 103645. https://doi.org/10.1016/j.jtrangeo.2023.103645
  5. Biagi, L., Brovelli, M. A., & Stucchi, L. (2020). Mapping The Accessibility In Openstreetmap: A Comparison Of Different Techniques. The Interna-tional Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B4-2020, 229–236. https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-229-2020
  6. Bodansky, E., Gribov, A., & Pilouk, M. (2002). Smoothing and Compression of Lines Obtained by Raster-to-Vector Conversion. Graphics Recogni-tion Algorithms and Applications, 256–265. https://doi.org/10.1007/3-540-45868-9_22
  7. Bustos, C., Rhoads, D., Solé-Ribalta, A., Masip, D., Arenas, A., Lapedriza, A., & Borge-Holthoefer, J. (2021). Explainable, automated urban inter-ventions to improve pedestrian and vehicle safety. Transportation Research Part C: Emerging Technologies, 125, 103018. https://doi.org/10.1016/j.trc.2021.103018
  8. Camboim, S., Bravo, J., & Sluter, C. (2015). An investigation into the completeness of, and the updates to, OpenStreetMap data in a heteroge-neous area in Brazil. ISPRS International Journal of Geo-Information, 4(3), 1366–1388. https://doi.org/10.3390/ijgi4031366
  9. Chen, L. (2010). Smoothness and smooth extensions (I): Generalization of MWK functions and gradually varied functions. arXiv preprint https://doi.org/10.48550/arXiv.1005.3727
  10. Ertz, O., Fischer, A., Ghorbel, H., Hüsser, O., Sandoz, R., & Scius-Bertrand, A. (2021). Citizen Participation & Digital Tools To Improve Pedestrian Mobility In Cities. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVI-4/W1, 29–34. https://doi.org/10.5194/isprs-archives-XLVI-4-W1-2021-29-2021
  11. Ferster, C., Fischer, J., Manaugh, K., Nelson, T., & Winters, M. (2019). Using OpenStreetMap to inventory bicycle infrastructure: A comparison with open data from cities. International Journal of Sustainable Transportation, 14(1), 64–73. https://doi.org/10.1080/15568318.2018.1519746
  12. Fidalgo, C. D., Machado Santos, I., de A. Nogueira, C., Clara Souza Portugal, M., & Maria T. Martins, L. (2021). Urban sidewalks, dysfunction and chaos on the projected floor. The search for accessible pavements and sustainable mobility. In Proceedings of the 7th International Congress on Scientific Knowledge. https://doi.org/10.25242/8876113220212366
  13. Froehlich, J. E., Saugstad, M., Saha, M., & Johnson, M. (2022). Towards Mapping and Assessing Sidewalk Accessibility Across Sociocultural and Geographic Contexts. https://doi.org/10.48550/arXiv.2207.13626
  14. Gjeruldsen, E. (2020). Detecting sidewalks in OpenStreetMap using machine learning LATEX Version. Master's thesis, Østfold University. https://hdl.handle.net/11250/2676606
  15. Haklay, M. (2010). How good is OpenStreetMap information? A comparative study of OpenStreetMap and Ordnance Survey datasets for London and the rest of England. Environment and Planning B: Planning and Design, 37, 682-703. https://doi.org/10.1068/b35097
  16. Harrower, M., & Brewer, C. A. (2003). ColorBrewer. org: an online tool for selecting colour schemes for maps. The Cartographic Journal, 40(1), 27-37. https://doi.org/10.1179/000870403235002042
  17. Hochmair, H. H., Zielstra, D., & Neis, P. (2014). Assessing the Completeness of Bicycle Trail and Lane Features in OpenStreetMap for the United States. Transactions in GIS, 19(1), 63–81. https://doi.org/10.1111/tgis.12081
  18. Hosseini, M., Saugstad, M., Miranda, F., Sevtsuk, A., Silva, C. T., & Froehlich, J. E. (2022). Towards Global-Scale Crowd+AI Techniques to Map and Assess Sidewalks for People with Disabilities. https://doi.org/10.48550/arXiv.2206.13677
  19. International Organization for Standardization. (2013). Geographic information — Data quality (ISO Standard No. 19157:2013). https://www.iso.org/standard/32575.html
  20. Jiang, Y., Lobo, M. J., Christophe, S., & Jouffrais, C. (2021). Mapping road crossings for visually impaired people. In 30th International Cartograph-ic Conference (ICC 2021), Florence, Italy, 14-18 December 2021 (pp. 1–2). https://doi.org/10.5194/ica-abs-3-127-2021
  21. Kayama, R., & Yairi, I. (2013). Detection of sidewalk border using camera on buggy for people with visual impairments. Journal of Advanced Com-putational Intelligence and Intelligent Informatics, 17(1), 114-119. https://www.semanticscholar.org/paper/Detection-of-sidewalk-border-using-camera-on-buggy-Kayama-Yairi/416337071e9babd9f9193e17c42f607add54e4af
  22. Lei, T. L. (2020). Geospatial data conflation: a formal approach based on optimization and relational databases. International Journal of Geograph-ical Information Science, 34(11), 2296–2334. https://doi.org/10.1080/13658816.2020.1778001
  23. Leśniewski, M., Świąder, M., Kaczmarek, I., Castro, D., Kamińska, J. A., Pilawka, T., & Kazak, J. K. (2021). Towards Transit‑Oriented Development for Sustainable Urban Mobility: Insights from a Central European City. Geomatics and Environmental Engineering, 15, 39-53. https://doi.org/10.7494/geom.2021.15.3.39
  24. Li, W., Goodchild, M. F., & Church, R. (2013). An efficient measure of compactness for two-dimensional shapes and its application in regionaliza-tion problems. International Journal of Geographical Information Science, 27(6), 1227-1250. https://doi.org/10.1080/13658816.2012.752093
  25. Map Features. (2023). In OpenStreetMap Wiki. Retrieved March 8, 2023, from https://wiki.openstreetmap.org/wiki/Map_features
  26. Mobasheri, A., Bakillah, M., Rousell, A., Hahmann, S., & Zipf, A. (2015). On the completeness of sidewalk information in OpenStreetMap, a case study of Germany. In Proceedings of the 18th AGILE International Conference on Geographic Information Science, Lisbon, Portugal, 9-12 June 2015. https://api.semanticscholar.org/CorpusID:4483034
  27. Mobasheri, A., Huang, H., Degrossi, L., & Zipf, A. (2018). Enrichment of OpenStreetMap data completeness with sidewalk geometries using data mining techniques. Sensors, 18(2), 509. https://doi.org/10.3390/s18020509
  28. Mobasheri, A., Sun, Y., Loos, L., & Ali, A. (2017). Are crowdsourced datasets suitable for specialized routing services? Case study of Open-StreetMap for routing of people with limited mobility. Sustainability, 9(6), 997. https://doi.org/10.3390/su9060997
  29. Mooney, P., & Minghini, M. (2017). A Review of OpenStreetMap Data. In Mapping and the Citizen Sensor (pp. 37–59). Ubiquity Press. https://doi.org/10.5334/bbf.c
  30. Neis, P., & Zielstra, D. (2014). Recent developments and future trends in volunteered geographic information research: The case of Open-StreetMap. Future Internet, 6(1), 76-106. https://doi.org/10.3390/fi6010076
  31. Neis, P., & Zipf, A. (2012). Analyzing the Contributor Activity of a Volunteered Geographic Information Project — The Case of OpenStreetMap. ISPRS International Journal of Geo-Information, 1(2), 146–165. https://doi.org/10.3390/ijgi1020146
  32. New York City Department of Transportation. (2023). About DOT. Retrieved from https://www.nyc.gov/html/dot/html/about/about.shtml
  33. Omar, K. S., Moreira, G., Hodczak, D., Hosseini, M., & Miranda, F. (2022). Crowdsourcing and Sidewalk Data: A Preliminary Study on the Trust-worthiness of OpenStreetMap Data in the US. https://doi.org/10.48550/arXiv.2210.02350
  34. OSM contributors. (2023). Taginfo. https://taginfo.openstreetmap.org
  35. OSM Wiki. (2011). Proposed features/Sidewalk as separate way. Retrieved from https://wiki.openstreetmap.org/w/index.php?oldid=2312766
  36. OSM Wiki. (2016). Proposed features/sidewalk schema. Retrieved April from https://wiki.openstreetmap.org/wiki/Proposed_features/sidewalk_schema
  37. OSM Germany. (2023). JOSM: an advanced and extensible OSM editor. https://josm.openstreetmap.de/wiki/WikiStart
  38. Pereira, K. C., Neckel, A., Kujawa, H. A., Kunz, M., Cardoso, G., Ribeiro, L. A., de Almeida Silva, C. C. O., Gnoatto, P., Frighetto, J., & Visentin, T. G. (2017). Pedestrian Mobility on Public Sidewalks Evaluated by the IAAPE Method. Journal of Civil Engineering and Architecture, 11(8). https://doi.org/10.17265/1934-7359/2017.08.007
  39. Bustos, C., Rhoads, D., Solé-Ribalta, A., Masip, D., Arenas, A., Lapedriza, A., & Borge-Holthoefer, J. (2021). Explainable, automated urban inter-ventions to improve pedestrian and vehicle safety. Transportation Research Part C: Emerging Technologies, 125, 103018. https://doi.org/10.1016/j.trc.2021.103018
  40. Rodríguez, D. A., Merlin, L., Prato, C. G., Conway, T. L., Cohen, D., Elder, J. P., Evenson, K. R., McKenzie, T. L., Pickrel, J. L., & Veblen-Mortenson, S. (2015). Influence of the built environment on pedestrian route choices of adolescent girls. Environment and behavior, 47(4), 359–394. https://doi.org/10.1177/0013916513520004
  41. Saha, M., Saugstad, M., Maddali, H. T., Zeng, A., Holland, R., Bower, S., Dash, A., Chen, S., Li, A., Hara, K., & Froehlich, J. (2019). Project sidewalk: A web-based crowdsourcing tool for collecting sidewalk accessibility data at scale. Proceedings of the 2019 CHI Conference on Human Fac-tors in Computing Systems. https://doi.org/10.1145/3290605.3300292
  42. Sehra, S., Singh, J., & Singh Rai, H. (2013). Assessment of OpenStreetMap Data - A Review. International Journal of Computer Applications, 76(16), 17–20. https://doi.org/10.5120/13331-0888
  43. Sidewalk city: remapping public space in Ho Chi Minh City. (2015). Choice Reviews Online, 53(02), 53-0613-53–0613. https://doi.org/10.5860/choice.192737
  44. Taskar Center for Accessible Technology & Humanitarian Openstreetmap Team. (2021). OpenSidewalks Mapping statistics Vila Mariana, Sao Paulo, Brazil - Crossings. Retrieved from https://tasks.opensidewalks.com/projects/51/stats
  45. Taskar Center for Accessible Technology & Humanitarian OpenStreetMap Team. (2021). OpenSidewalks Tasking Manager. Retrieved from https://tasks.opensidewalks.com
  46. Taskar Center for Accessible Technology, University of Washington. (2016). OpenSidewalks. Retrieved from https://www.opensidewalks.com
  47. UN. (2015). Transforming our world: The 2030 Agenda for Sustainable Development. https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf
  48. US Department of Transportation, Federal Highway Administration - FHWA Safety Program. (2013). Safety benefits of walkways, sidewalks, and paved shoulders. https://safety.fhwa.dot.gov/ped_bike/tools_solve/walkways_brochure/walkways_brochure.pdf
  49. Vestena, K. M. (2021). OSM SidewalKreator. https://github.com/kauevestena/osm_sidewalkreator
  50. Zhou, Q., & Tian, Y. (2018). The use of geometric indicators to estimate the quantitative completeness of street blocks in OpenStreetMap. Transactions in GIS, 22(6), 1550–1572. https://doi.org/10.1111/tgis.12486