Vol. 15 No. 4 (2024): (Issue in progress)
Research Article

Changes in Fuel Prices and the Use of Public Transport: Insights from the European Union following the Invasion of Ukraine

André Alves
Centre of Geographical Studies and Associate Laboratory TERRA, Institute of Geography and Spatial Planning, University of Lisbon, 1600-276 Lisbon, Portugal
Nuno Marques da Costa
Centre of Geographical Studies and Associate Laboratory TERRA, Institute of Geography and Spatial Planning, University of Lisbon, 1600-276 Lisbon, Portugal
Bivariate relationship between changes in fuel prices and mobility from 31 January to 31 May 2022 (Source: calculated Directorate-General for Energy (2022) and Google (2022))

Published 2024-10-15

Keywords

  • public transport,
  • mobility patterns,
  • fuel price,
  • transport geography,
  • Russian-Ukrainian war,
  • Google community mobility reports
  • ...More
    Less

How to Cite

Alves, André, and Nuno Marques da Costa. 2024. “Changes in Fuel Prices and the Use of Public Transport: Insights from the European Union Following the Invasion of Ukraine”. European Journal of Geography 15 (4):232-43. https://doi.org/10.48088/ejg.a.alv.15.4.232.243.
Received 2024-06-10
Accepted 2024-10-14
Published 2024-10-15

Abstract

Rising fuel prices are known to affect public transport (PT) demand. However, the impact of the oil market inflation and subsequent energy crisis following the 2022 Russian invasion of Ukraine on mobility behaviour in Europe has received little attention. This study examines shifts in fuel prices and PT mobility across 25 European Union countries between February and May 2022. Weekly variations in PT mobility were correlated with diesel and gasoline prices, and a multiple linear regression was conducted to assess the influence of contextual factors in explaining variations in PT usage. The results indicate a significant increase in PT mobility across all countries after February 2022, which was positively associated with rising fuel prices. Approximately 84% of the variance in mobility was explained, with more pronounced increases observed in countries characterised by lower telecommuting prevalence, higher housing costs relative to household income, greater price differentials between gasoline and diesel, lower adoption of alternative fuels, and higher motorisation rates. These findings suggest that the surge in fuel prices, driven by the 2022 energy crisis, may have stimulated an increase in transit ridership.

Highlights:

  • The rise in PT usage in the EU correlated with higher fuel prices post-Ukraine invasion.
  • Temporal and spatial patterns varied across countries, indicating contextual influences.
  • Five key indicators explained disparities in PT mobility changes among EU countries.

Downloads

Download data is not yet available.

References

  1. Acevedo, R. A., & Lorca-Susino, M. (2021). The European Union oil dependency: a threat to economic growth and diplomatic freedom. Interna-tional Journal of Energy Sector Management, 15(5), 987–1006. https://doi.org/10.1108/IJESM-10-2020-0010
  2. Addison, T., Roe, A., & Stevens, P. (2018). 4 The Role of Oil and Gas in the Economic Development of the Global Economy.
  3. Ahlawat, R., Ghai, M., & Garg, S. K. (2022). Bibliometric Analysis of Published Research on Russia-Ukraine War Using VOSviewer. Economic Affairs (New Delhi), 67(4), 997–1002. https://doi.org/10.46852/0424-2513.4s.2022.33
  4. Alam, M. K., Tabash, M. I., Billah, M., Kumar, S., & Anagreh, S. (2022). The Impacts of the Russia–Ukraine Invasion on Global Markets and Com-modities: A Dynamic Connectedness among G7 and BRIC Markets. Journal of Risk and Financial Management, 15(8). https://doi.org/10.3390/jrfm15080352
  5. Albulescu, C. T., & Mutascu, M. I. (2021). Fuel price co-movements among France, Germany and Italy: A time-frequency investigation. Energy, 225, 120236. https://doi.org/10.1016/j.energy.2021.120236
  6. Allen, J., Higgins, C. D., Silver, D., & Farber, S. (2023). Are low-income residents disproportionately moving away from transit? Journal of Transport Geography, 110, 103635. https://doi.org/10.1016/j.jtrangeo.2023.103635
  7. Bastian, A., Börjesson, M., & Car, P. (2015). Peak car? Drivers of the recent decline in Swedish car use. Transport Policy, 42, 94–102. https://doi.org/10.1016/j.tranpol.2015.05.005
  8. Bastian, A., Börjesson, M., & Eliasson, J. (2016). Explaining “peak car” with economic variables. Transportation Research Part A: Policy and Prac-tice, 88, 236–250. https://doi.org/10.1016/j.tra.2016.04.005
  9. Bousquet, A., & Sanin, M. E. (2024). Car-fuel poverty: Determinants and policy implications for France. Transportation Research Part A: Policy and Practice, 185, 104095. https://doi.org/10.1016/j.tra.2024.104095
  10. Bradshaw, M. J. (2009). The geopolitics of global energy security. Geography Compass, 3(5), 1920–1937. https://doi.org/10.1111/j.1749-8198.2009.00280.x
  11. Bresson, G., Dargay, J., Madre, J. L., & Pirotte, A. (2003). The main determinants of the demand for public transport: A comparative analysis of England and France using shrinkage estimators. Transportation Research Part A: Policy and Practice, 37(7), 605–627. https://doi.org/10.1016/S0965-8564(03)00009-0
  12. Buehler, R. (2011). Determinants of transport mode choice: a comparison of Germany and the USA. Journal of Transport Geography, 19(4), 644–657. https://doi.org/10.1016/j.jtrangeo.2010.07.005
  13. Buehler, R., & Pucher, J. (2022). Cycling through the COVID-19 Pandemic to a More Sustainable Transport Future: Evidence from Case Studies of 14 Large Bicycle-Friendly Cities in Europe and North America. Sustainability, 14(12), 7293. https://doi.org/10.3390/su14127293
  14. Cheng, L., Chen, X., De Vos, J., Lai, X., & Witlox, F. (2019). Applying a random forest method approach to model travel mode choice behavior. Travel Behaviour and Society, 14, 1–10. https://doi.org/10.1016/j.tbs.2018.09.002
  15. Cheng, L., Chen, X., Yang, S., Wu, J., & Yang, M. (2019). Structural equation models to analyze activity participation, trip generation, and mode choice of low-income commuters. Transportation Letters, 11(6), 341–349. https://doi.org/10.1080/19427867.2017.1364460
  16. Chi, J. (2022). Asymmetric Gasoline Price Effects on Public Transit Ridership: Evidence from U.S. Cities. Transportation Research Record, 2676(5), 643–659. https://doi.org/10.1177/03611981211069065
  17. Chiou, Y. C., Jou, R. C., & Yang, C. H. (2015). Factors affecting public transportation usage rate: Geographically weighted regression. Transporta-tion Research Part A: Policy and Practice, 78, 161–177. https://doi.org/10.1016/j.tra.2015.05.016
  18. Christidis, P., Christodoulou, A., Navajas-Cawood, E., & Ciuffo, B. (2021). The post-pandemic recovery of transport activity: Emerging mobility patterns and repercussions on future evolution. Sustainability (Switzerland), 13(11), 1–17. https://doi.org/10.3390/su13116359
  19. Colgan, J. D., Gard-Murray, A. S., & Hinthorn, M. (2023). Quantifying the value of energy security: How Russia’s invasion of Ukraine exploded Europe’s fossil fuel costs. Energy Research and Social Science, 103, 103201. https://doi.org/10.1016/j.erss.2023.103201
  20. Cunado, J., & Pérez de Gracia, F. (2003). Do oil price shocks matter? Evidence for some European countries. Energy Economics, 25(2), 137–154. https://doi.org/10.1016/S0140-9883(02)00099-3
  21. de Jong, M. (2024). Wind of change: the impact of REPowerEU policy reforms on gas security. Policy Studies, 1–19. https://doi.org/10.1080/01442872.2024.2302442
  22. Ding, C., Wang, D., Liu, C., Zhang, Y., & Yang, J. (2017). Exploring the influence of built environment on travel mode choice considering the medi-ating effects of car ownership and travel distance. Transportation Research Part A: Policy and Practice, 100, 65–80. https://doi.org/10.1016/j.tra.2017.04.008
  23. Directorate-General for Energy (2022). The European Commission’s Oil Bulletin. European Comission. https://data.europa.eu/data/datasets/eu-oil-bulletin?locale=en
  24. Drolsbach, C. P., Gail, M. M., & Klotz, P. A. (2023). Pass-through of temporary fuel tax reductions: Evidence from Europe. Energy Policy, 183, 113833. https://doi.org/10.1016/j.enpol.2023.113833
  25. Duszczyk, M., Górny, A., Kaczmarczyk, P., & Kubisiak, A. (2023). War refugees from Ukraine in Poland – one year after the Russian aggression. Socioeconomic consequences and challenges. Regional Science Policy and Practice, 15(1), 181–199. https://doi.org/10.1111/rsp3.12642
  26. European Commission, D.-G. for M. and T. (2023). EU transport in figures – Statistical pocketbook 2023. Publications Office of the European Union. https://data.europa.eu/doi/10.2832/319371
  27. Findenegg, J., & Wessel, J. (2024). Pump or pedal? The impact of fuel prices on cycling in Germany. Transportation Research Part A, 186, 104146. https://doi.org/10.1016/j.tra.2024.104146
  28. Fotheringham, A. S., & Wong, D. W. S. (1991). The Modifiable Areal Unit Problem in Multivariate Statistical Analysis. Environment and Planning A: Economy and Space, 23(7), 1025–1044. https://doi.org/10.1068/a231025
  29. Frondel, M., & Vance, C. (2011). Rarely enjoyed? A count data analysis of ridership in Germany’s public transport. Transport Policy, 18(2), 425–433. https://doi.org/10.1016/j.tranpol.2010.09.009
  30. Ghobarah, H. A., Huth, P., & Russett, B. (2004). The post-war public health effects of civil conflict. Social Science and Medicine, 59(4), 869–884. https://doi.org/10.1016/j.socscimed.2003.11.043
  31. Google. (2022). COVID-19 Community Mobility Reports. https://www.google.com/covid19/mobility/
  32. Guan, Y., Yan, J., Shan, Y., Zhou, Y., Hang, Y., Li, R., Liu, Y., Liu, B., Nie, Q., Bruckner, B., Feng, K., & Hubacek, K. (2023). Burden of the global energy price crisis on households. Nature Energy, 8(3), 304–316. https://doi.org/10.1038/s41560-023-01209-8
  33. Haire, A. R., & Machemehl, R. B. (2007). Impact of Rising Fuel Prices on U.S. Transit Ridership. Transportation Research Record, 1992(1), 11–19. https://doi.org/10.3141/1992-02
  34. Horner, M. W., & Murray, A. T. (2002). Excess Commuting and the Modifiable Areal Unit Problem. Urban Studies, 39(1), 131–139. https://doi.org/10.1080/00420980220099113
  35. Ingvardson, J. B., & Nielsen, O. A. (2018). How urban density, network topology and socio-economy influence public transport ridership: Empiri-cal evidence from 48 European metropolitan areas. Journal of Transport Geography, 72, 50–63. https://doi.org/10.1016/j.jtrangeo.2018.07.002
  36. Jenelius, E., & Cebecauer, M. (2020). Impacts of COVID-19 on public transport ridership in Sweden: Analysis of ticket validations, sales and pas-senger counts. Transportation Research Interdisciplinary Perspectives, 8, 100242. https://doi.org/10.1016/j.trip.2020.100242
  37. Jung, H., Yu, G. J., & Kwon, K. M. (2016). Investigating the effect of gasoline prices on transit ridership and unobserved heterogeneity. Journal of Public Transportation, 19(4), 56–74. https://doi.org/10.5038/2375-0901.19.4.4
  38. Kalogiannidis, S., Chatzitheodoridis, F., Kalfas, D., Kontsas, S., & Toska, E. (2022). The Economic Impact of Russia’s Ukraine Conflict on the EU Fuel Markets. International Journal of Energy Economics and Policy, 12(6), 37–49. https://doi.org/10.32479/ijeep.13493
  39. Kellermann, R., Sivizaca Conde, D., Rößler, D., Kliewer, N., & Dienel, H. L. (2022). Mobility in pandemic times: Exploring changes and long-term effects of COVID-19 on urban mobility behavior. Transportation Research Interdisciplinary Perspectives, 15. https://doi.org/10.1016/j.trip.2022.100668
  40. Kenworthy, J. R., & Svensson, H. (2022). Exploring the Energy Saving Potential in Private, Public and Non-Motorized Transport for Ten Swedish Cities. Sustainability (Switzerland), 14(2), 1–44. https://doi.org/10.3390/su14020954
  41. Krog Juvik, A. (2024). Towards a less resource-intensive everyday life? Exploring relations between food, mobility, and housing practices [Univer-sity of Copenhagen]. https://doi.org/10.13140/RG.2.2.30241.01122
  42. Kutcherov, V., Morgunova, M., Bessel, V., & Lopatin, A. (2020). Russian natural gas exports: An analysis of challenges and opportunities. Energy Strategy Reviews, 30, 100511. https://doi.org/10.1016/j.esr.2020.100511
  43. Lambert, L. A., Tayah, J., Lee-Schmid, C., Abdalla, M., Abdallah, I., Ali, A. H. M., Esmail, S., & Ahmed, W. (2022). The EU’s natural gas Cold War and diversification challenges. Energy Strategy Reviews, 43, 100934. https://doi.org/10.1016/j.esr.2022.100934
  44. Lane, B. W. (2010). The relationship between recent gasoline price fluctuations and transit ridership in major US cities. Journal of Transport Geog-raphy, 18(2), 214–225. https://doi.org/10.1016/j.jtrangeo.2009.04.002
  45. Lawrence, M. J., Stemberger, H. L. J., Zolderdo, A. J., Struthers, D. P., & Cooke, S. J. (2015). The effects of modern war and military activities on biodiversity and the environment. Environmental Reviews, 23(4), 443–460. https://doi.org/10.1139/er-2015-0039
  46. Leung, A., Burke, M., Cui, J., & Perl, A. (2019). Fuel price changes and their impacts on urban transport–a literature review using bibliometric and content analysis techniques, 1972–2017. Transport Reviews, 39(4), 463–484. https://doi.org/10.1080/01441647.2018.1523252
  47. Li, H., Raeside, R., Chen, T., & McQuaid, R. W. (2012). Population ageing, gender and the transportation system. Research in Transportation Eco-nomics, 34(1), 39–47. https://doi.org/10.1016/j.retrec.2011.12.007
  48. Liadze, I., Macchiarelli, C., Mortimer‐Lee, P., & Sanchez Juanino, P. (2022). The Economic Costs of the Russia‐Ukraine War. The World Economy, March. https://doi.org/10.1111/twec.13336
  49. Liobikienė, G., Matiiuk, Y., & Krikštolaitis, R. (2023). The concern about main crises such as the Covid-19 pandemic, the war in Ukraine, and cli-mate change’s impact on energy-saving behavior. Energy Policy, 180. https://doi.org/10.1016/j.enpol.2023.113678
  50. Liu, J. L., Fu, J., Wong, S. S., & Bashir, S. (2023). Energy Security and Sustainability for the European Union after/during the Ukraine Crisis: A Per-spective. Energy and Fuels, 37(5), 3315–3327. https://doi.org/10.1021/acs.energyfuels.2c02556
  51. Macharis, C., Tori, S., de Séjournet, A., Keseru, I., & Vanhaverbeke, L. (2021). Can the COVID-19 Crisis be a Catalyst for Transition to Sustainable Urban Mobility? Assessment of the Medium- and Longer-Term Impact of the COVID-19 Crisis on Mobility in Brussels. Frontiers in Sustainabil-ity, 2, 1–16. https://doi.org/10.3389/frsus.2021.725689
  52. Mattioli, G., Philips, I., Anable, J., & Chatterton, T. (2019). Vulnerability to motor fuel price increases: Socio-spatial patterns in England. Journal of Transport Geography, 78, 98–114. https://doi.org/10.1016/j.jtrangeo.2019.05.009
  53. Mattioli, G., Wadud, Z., & Lucas, K. (2018). Vulnerability to fuel price increases in the UK: A household level analysis. Transportation Research Part A: Policy and Practice, 113, 227–242. https://doi.org/10.1016/j.tra.2018.04.002
  54. Mileu, N., Costa, N., Marques da Costa, E., & Alves, A. (2022). Mobility and Dissemination of COVID-19 in Portugal: Correlations and Estimates from Google’s Mobility Data. Data, 7, 107. https://doi.org/10.3390/data7080107
  55. Minelgaitė, A., Dagiliūtė, R., & Liobikienė, G. (2020). The usage of public transport and impact of satisfaction in the European Union. Sustainabil-ity (Switzerland), 12(21), 1–14. https://doi.org/10.3390/su12219154
  56. Moutinho, V., Bento, J. P. C., & Hajko, V. (2017). Price relationships between crude oil and transport fuels in the European Union before and after the 2008 financial crisis. Utilities Policy, 45, 76–83. https://doi.org/10.1016/j.jup.2017.02.003
  57. Newman, P., & Kenworthy, J. R. (1989). Cities and automobile dependence: A sourcebook. Gower Technical.
  58. Nguyen, M. H., & Pojani, D. (2024). The effect of fuel price fluctuations on utilitarian cycling rates: A survey of cyclists in Vietnam. Journal of Transport Geography, 115, 103793. https://doi.org/10.1016/j.jtrangeo.2024.103793
  59. Nicolas, J. P., & Pelé, N. (2017). Measuring trends in household expenditures for daily mobility. The case in Lyon, France, between 1995 and 2015. Transport Policy, 59, 82–92. https://doi.org/10.1016/j.tranpol.2017.07.008
  60. Noussan, M. (2019). Effects of the Digital Transition in Passenger Transport - an Analysis of Energy Consumption Scenarios in Europe. Fondazione Eni Enrico Mattei (FEEM).
  61. Nowak, W. P., & Savage, I. (2013). The cross elasticity between gasoline prices and transit use: Evidence from Chicago. Transport Policy, 29, 38–45. https://doi.org/10.1016/j.tranpol.2013.03.002
  62. Oh, J., Lee, H. Y., Khuong, Q. L., Markuns, J. F., Bullen, C., Barrios, O. E. A., Hwang, S. sik, Suh, Y. S., McCool, J., Kachur, S. P., Chan, C. C., Kwon, S., Kondo, N., Hoang, V. M., Moon, J. R., Rostila, M., Norheim, O. F., You, M., Withers, M., … Gostin, L. O. (2021). Mobility restrictions were asso-ciated with reductions in COVID-19 incidence early in the pandemic: evidence from a real-time evaluation in 34 countries. Scientific Reports, 11(1), 1–17. https://doi.org/10.1038/s41598-021-92766-z
  63. Polemis, M. L., & Fotis, P. N. (2013). Do gasoline prices respond asymmetrically in the euro zone area? Evidence from cointegrated panel data analysis. Energy Policy, 56, 425–433. https://doi.org/10.1016/j.enpol.2013.01.001
  64. Qian, L., Zeng, Q., & Li, T. (2022). Geopolitical risk and oil price volatility: Evidence from Markov-switching model. International Review of Econom-ics and Finance, 81(April), 29–38. https://doi.org/10.1016/j.iref.2022.05.002
  65. Queiros, M., da Costa, N. M., Morgado, P., Vale, M., Guerreiro, J., Rodrigues, F., Mileu, N., & Almeida, A. (2016). Gender equality and the City: a methodological approach to mobility in space-time. Tria-Territorio Della Ricerca Su Insediamenti E Ambiente. https://doi.org/10.6092/2281-4574/5061
  66. Ratner, M., Belkin, P., Nichol, J., & Woehrel, S. (2012). Europe’s energy security: Options and challenges to natural gas supply diversification.
  67. Ratner, M., & Nerurkar, N. (2011). Middle East and North Africa Unrest. In US Congressional Research Service Reports. Congressional Research Service (CRS). https://www.congress.gov/CRSReports
  68. Rozynek, C. (2024). Imagine the financial barrier to public transport use disappears. The impact of the 9-Euro-Ticket on the mobility and social participation of low-income households with children. Transport Policy, 149, 80–90. https://doi.org/10.1016/j.tranpol.2024.02.003
  69. Saâdaoui, F., Ben, S., & Goodell, J. W. (2022). Causality of geopolitical risk on food prices : Considering the Russo – Ukrainian conflict. Finance Research Letters, 49, 103103. https://doi.org/10.1016/j.frl.2022.103103
  70. Sagner, J. S. (1974). The impact of the energy crisis on American cities based on dispersion of employment, utilization of transit, and car pooling. Transportation Research, 8(4), 307–316. https://doi.org/https://doi.org/10.1016/0041-1647(74)90049-5
  71. Saridakis, G., Alexiou, C., Hosein, R., & Satnarine-Singh, N. (2022). Hegemonic Sanctions and Global Economic Ramifications in the Context of the Russian-Ukrainian Conflict: A Commentary. POUDAI - Journal of Economics and Business, 72(1), 34–55. https://doi.org/10.2139/ssrn.4176209
  72. Scicluna, C. (2022, October 24). Malta to maintain energy prices at pre-COVID levels. Reuters. https://www.reuters.com/business/energy/malta-maintain-energy-prices-pre-covid-levels-2022-10-24/
  73. Sganzerla Martinez, G., & Kelvin, D. J. (2023). Convergence in Mobility Data Sets From Apple, Google, and Meta. JMIR Public Health and Surveil-lance, 9, e44286. https://doi.org/10.2196/44286
  74. Sianturi, P. C., Nasrudin, R., & Yudhistira, M. H. (2022). Estimating the price elasticity of demand for urban mass rapid transit ridership: A quasi-experimental evidence from Jakarta, Indonesia. Case Studies on Transport Policy, 10(1), 354–364. https://doi.org/https://doi.org/10.1016/j.cstp.2021.12.015
  75. Silver, K., Lopes, A., Vale, D., & da Costa, N. M. (2023). The inequality effects of public transport fare: The case of Lisbon’s fare reform. Journal of Transport Geography, 112. https://doi.org/10.1016/j.jtrangeo.2023.103685
  76. Sulyok, M., & Walker, M. (2020). Community movement and covid-19: A global study using google’s community mobility reports. Epidemiology and Infection. https://doi.org/10.1017/S0950268820002757
  77. Swimmer, C. R., & Klein, C. C. (2010). Public Transportation Ridership Levels. Journal for Economic Educators, 10(1), 40–46. https://doi.org/DOI: ,
  78. Taylor, B. D., & Fink, C. (2003). The Factors Influencing Transit Ridership: A Review and Analysis of the Ridership Literature. https://escholarship.org/uc/item/3xk9j8m2
  79. Taylor, B. D., Miller, D., Iseki, H., & Fink, C. (2009). Nature and/or nurture? Analyzing the determinants of transit ridership across US urbanized areas. Transportation Research Part A: Policy and Practice, 43(1), 60–77. https://doi.org/10.1016/j.tra.2008.06.007
  80. Tirachini, A., & Cats, O. (2020). COVID-19 and Public Transportation: Current Assessment, Prospects, and Research Needs. Journal of Public Transportation, 22. https://doi.org/10.5038/2375-0901.22.1.1
  81. Urbanek, A. (2019). Public Transport Fares as an Instrument of Impact on the Travel Behaviour: An Empirical Analysis of the Price Elasticity of Demand BT - Challenges of Urban Mobility, Transport Companies and Systems (M. Suchanek (ed.); pp. 101–113). Springer International Publishing.
  82. Van de Graaf, T., Bouckaert, R., Van Coppenolle, H., Vandenhole, K., Paredis, E., Praet, J., de Jong, M., Dejonghe, M., Blondeel, M., Vindevogel, B., De Ville, F., Van Doorslaer, H., Vermeiren, M., Bougrea, A., Taghon, S., & Haesebrouck, T. (2023). The Global Energy Crisis. Ghent Institute for International and European Studies.
  83. Vatansever, A. (2017). Is Russia building too many pipelines? Explaining Russia’s oil and gas export strategy. Energy Policy, 108, 1–11. https://doi.org/10.1016/j.enpol.2017.05.038
  84. Vitola, A., & Christopoulos, G. (2023). Telework Trends in Europe: Who are Up-and-Coming, Leaders, Losing Ground or Laggards? Baltic Journal of Real Estate Economics and Construction Management, 11(1), 305–314. https://doi.org/10.2478/bjreecm-2023-0019
  85. Vojtěch, H., & Barbora, S. (2023). Demand for urban public transport in the Czech Republic. Review of Economic Perspectives, 23(4), 277–292. https://doi.org/10.2478/revecp-2023-0011
  86. Wang, G. H. K., & Skinner, D. (1984). The impact of fare and gasoline price changes on monthly transit ridership: Empirical evidence from seven U.S. transit authorities. Transportation Research Part B: Methodological, 18(1), 29–41. https://doi.org/https://doi.org/10.1016/0191-2615(84)90004-3
  87. Yeoman, I. (2022). Ukraine, price and inflation. Journal of Revenue and Pricing Management, 21(3), 253–254. https://doi.org/10.1057/s41272-022-00378-7
  88. Zakeri, B., Paulavets, K., Barreto-Gomez, L., Echeverri, L. G., Pachauri, S., Boza-Kiss, B., Zimm, C., Rogelj, J., Creutzig, F., Ürge-Vorsatz, D., Victor, D. G., Bazilian, M. D., Fritz, S., Gielen, D., McCollum, D. L., Srivastava, L., Hunt, J. D., & Pouya, S. (2022). Pandemic, War, and Global Energy Transi-tions. Energies, 15(17), 1–23. https://doi.org/10.3390/en15176114
  89. Zaremba, A., Cakici, N., Demir, E., & Long, H. (2022). When bad news is good news: Geopolitical risk and the cross-section of emerging market stock returns. Journal of Financial Stability, 58, 100964. https://doi.org/10.1016/j.jfs.2021.100964
  90. Zhang, T., & Burke, P. J. (2021). The effect of fuel prices on traffic flows : Evidence from New South Wales. Transportation Research Part A, 141, 502–522. https://doi.org/10.1016/j.tra.2020.09.025
  91. Zhou, X. Y., Lu, G., Xu, Z., Yan, X., Khu, S. T., Yang, J., & Zhao, J. (2023). Influence of Russia-Ukraine War on the Global Energy and Food Security. Resources, Conservation and Recycling, 188, 106657. https://doi.org/10.1016/j.resconrec.2022.106657