
Published 2025-07-04
Keywords
- Paleoislands,
- Last Glacial Period,
- Mediterranean Sea,
- Sea-level changes,
- Bathymetry
- Paleogeography ...More
How to Cite
Copyright (c) 2025 Pablo Fraile Jurado, Juan Carlos Mejías-García

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-07-02
Published 2025-07-04
Abstract
The Last Glacial Period (LGP) significantly altered sea levels and landscapes across the globe, with the Mediterranean Sea being no exception. During this period, fluctuating sea levels exposed numerous landmasses, some of which may have served as critical habitats for plants, animals, and even human populations. This study aims to identify and analyze the potential paleo-islands that were emerged in the Mediterranean Sea during the LGP (115,000 – 6,500 BP). Using high-resolution digital elevation models (DEMs) and bathymetric data, we reconstruct the Mediterranean’s paleogeography, focusing on the periods of maximum sea-level regression. A novel methodological approach was applied to determine the duration and extent of these paleo-islands, while filtering out uncertainties related to their size and elevation. Results show the existence of hundreds of potential paleo-islands, including larger landmasses that significantly expanded during this period. This research highlights the critical role these islands played in biogeographical processes, such as species migration and dispersal, and possibly in the migration patterns of early humans. Future work will focus on refining the data with localized sea-level curves and incorporating sedimentary and erosion processes into the analysis, providing a more comprehensive understanding of the Mediterranean’s geomorphological evolution
Highlights:
- Sea-level fluctuations during the LGP significantly altered Mediterranean landmasses.
- Identification of paleo-islands in the Mediterranean during the Last Glacial Period.
Downloads
References
- Álvarez-Francoso, J. I., Ojeda-Zújar, J., Díaz-Cuevas, P., Guisado-Pintado, E., Camarillo-Naranjo, J. M., Prieto-Campos, A., & Fraile-Jurado, P. (2020). A Specialized Geoviewer and Dashboard for Beach Erosion Rates Visualization and Exploration. Journal of Coastal Research, 95(SI), 1006-1010. https://doi.org/10.2112/SI95-196.1
- Amante, C. J., & Eakins, B. W. (2016). Accuracy of interpolated bathymetry in digital elevation models. Journal of Coastal Research, (76), 123-133. https://doi.org/10.2112/SI76-011
- Antonioli, F., Anzidei, M., Lambeck, K., Auriemma, R., Gaddi, D., Furlani, S., & Surace, L. (2007). Sea-level change during the Holocene in Sardinia and in the northeastern Adriatic (central Mediterranean Sea) from archaeological and geomorphological data. Quaternary Science Reviews, 26(19-21), 2463-2486. https://doi.org/10.1016/j.quascirev.2007.06.022
- Antonioli, F., Calcagnile, L., Ferranti, L., Mastronuzzi, G., Monaco, C., Orrù, P., & Taviani, M. (2021). New evidence of mis 3 relative sea level changes from the messina strait, Calabria (Italy). Water, 13(19), 2647. https://doi.org/10.3390/w13192647
- Bezinska, G. V., & Stoyanov, K. S. (2019). Modelling and hydro morphometric analysis of sub watershed: A case study of Mesta River, southwest-ern Bulgaria. European Journal of Geography, 10(2), 77–88. https://www.eurogeojournal.eu/index.php/egj/article/view/177
- Björck, S., Lambeck, K., Möller, P., Waldmann, N., Bennike, O., Jiang, H. & Porter, C. T. (2021). Relative sea level changes and glacio-isostatic modelling in the Beagle Channel, Tierra del Fuego, Chile: Glacial and tectonic implications. Quaternary Science Reviews, 251, 106657. https://doi.org/10.1016/j.quascirev.2020.106657
- Clement, A. C., & Peterson, L. C. (2008). Mechanisms of abrupt climate change of the last glacial period. Reviews of Geophysics, 46(4). https://doi.org/10.1029/2006RG000204
- Cooper, J. A. G., Green, A. N., & Compton, J. S. (2018). Sea-level change in southern Africa since the Last Glacial Maximum. Quaternary Science Reviews, 201, 303-318. https://doi.org/10.1016/j.quascirev.2018.10.013
- Deiana, G., Lecca, L., Melis, R. T., Soldati, M., Demurtas, V., & Orrù, P. E. (2021). Submarine geomorphology of the southwestern Sardinian conti-nental shelf (Mediterranean Sea): Insights into the LGM sea-level changes and related environments. Water, 13(2), 155. https://doi.org/10.3390/w13020155
- Díaz-Cuevas, P., Prieto-Campos, A., Fraile-Jurado, P., Ojeda-Zújar, J., & Álvarez-Francoso, J. I. (2020). Shoreline" Proxies" Evaluation for Mid-term Erosion Rates Calculation in Mesotidal and Microtidal Beaches (Andalusia, Spain). Journal of Coastal Research, 95(SI), 1062-1066. https://doi.org/10.2112/SI95-207.1
- Domzig, A., Yelles, K., Le Roy, C., Déverchère, J., Bouillin, J. P., Bracène, R. & Pauc, H. (2006). Searching for the Africa–Eurasia Miocene boundary offshore western Algeria (MARADJA'03 cruise). Comptes Rendus Geoscience, 338(1-2), 80-91. https://doi.org/10.1016/j.crte.2005.11.009
- Dutton, A., Villa, A., & Chutcharavan, P. M. (2022). Compilation of Last Interglacial (Marine Isotope Stage 5e) sea-level indicators in the Bahamas, Turks and Caicos, and the east coast of Florida, USA. Earth System Science Data, 14(5), 2385-2399. https://doi.org/10.5194/essd-14-2385-2022
- Enrichetti, F., Dominguez-Carrió, C., Toma, M., Bavestrello, G., Canese, S., & Bo, M. (2020). Assessment and distribution of seafloor litter on the deep Ligurian continental shelf and shelf break (NW Mediterranean Sea). Marine Pollution Bulletin, 151, 110872. https://doi.org/10.1016/j.marpolbul.2019.110872
- Ergin, M., Kazan, B., & Ediger, V. (1996). Source and depositional controls on heavy metal distribution in marine sediments of the Gulf of Isken-derun, Eastern Mediterranean. Marine Geology, 133(3-4), 223-239. https://doi.org/10.1016/0025-3227(96)00011-4
- Foutrakis, P. M., & Anastasakis, G. (2020). Quaternary continental shelf basins of Saronikos Gulf, Aegean Sea. Geo-Marine Letters, 40(5), 629-647. https://doi.org/10.1007/s00367-020-00653-9
- Fraile-Jurado, P., Iglesias-Campos, A., Simon-Colina, A., & Hodgson, N. (2019). Methods for assessing current and future coastal vulnerability to sea level rise. A review for a case-study in Europe. European Journal of Geography, 10(3), 97-119. https://www.eurogeojournal.eu/index.php/egj/article/view/194
- Fraile-Jurado, P, Mejías-García, J.C., Roldán-Muñoz, E., & Borja-Barrera, C. (2024) Reconstructing the Emerged Areas of the Mediterranean Dur-ing the Last Glaciation Using Bathymetric Data. Geografia Fisica e Dinamica Quaternaria, 46, 241-256. https://doi.org/10.4454/hrffie9
- Fraile-Jurado, P., & Mejías-García, J. C. (2022). Método para el cálculo, análisis y representación espacial de la variable" tiempo sumergido bajo el nivel del mar durante la última glaciación" en la plataforma continental del Golfo de Cádiz (España y Portugal). Revista de Geografía Norte Grande, (81), 183-205. https://doi.org/10.4067/S0718-34022022000100183
- Fraile-Jurado, P., & Ojeda-Zújar, J. (2013). The importance of the vertical accuracy of digital elevation models in gauging inundation by sea level rise along the Valdelagrana beach and marshes (Bay of Cádiz, SW Spain). Geo-Marine Letters, 33, 225-230. https://doi.org/10.1007/s00367-012-0317-8
- Fraile-Jurado, P. (2018). Assessing future local sea level rise in the islands of the outermost regions of the European Union. European Journal of Geography, 9(2), 54-65. https://eurogeojournal.eu/index.php/egj/article/view/135
- Frihy, O. E., Nasr, S. M., Ahmed, M. H., & El Raey, M. (1991). Temporal shoreline and bottom changes of the inner continental shelf off the Nile Delta, Egypt. Journal of Coastal Research, 465-475. http://www.jstor.org/stable/4297852
- Gao, J. (2009). Bathymetric mapping by means of remote sensing: methods, accuracy and limitations. Progress in Physical Geography, 33(1), 103-116. https://doi.org/10.1177/0309133309105657
- Hojati, M., & Mokarram, M. (2016). Determination of a topographic wetness index using high resolution digital elevation models. European Journal of Geography, 7(4), 41–52. https://www.eurogeojournal.eu/index.php/egj/article/view/382
- Ishiwa, T., Yokoyama, Y., Miyairi, Y., Obrochta, S., Sasaki, T., Kitamura, A., & Matsuzaki, H. (2016). Reappraisal of sea-level lowstand during the Last Glacial Maximum observed in the Bonaparte Gulf sediments, northwestern Australia. Quaternary International, 397, 373-379. https://doi.org/10.1186/s40562-016-0065-0
- Khan, N. S., Horton, B. P., Engelhart, S., Rovere, A., Vacchi, M., Ashe, E. L., & Shennan, I. (2019). Inception of a global atlas of sea levels since the Last Glacial Maximum. Quaternary Science Reviews, 220, 359-371. https://doi.org/10.1016/j.quascirev.2019.07.016
- Kholeif, S. E. H., & Ibrahim, M. I. (2010). Palynofacies analysis of inner continental shelf and middle slope sediments offshore Egypt, south-eastern Mediterranean. Geobios, 43(3), 333-347. https://doi.org/10.1016/J.GEOBIOS.2009.10.006
- Lafosse, M., Gorini, C., Le Roy, P., Alonso, B., d’Acremont, E., Ercilla, G., & Ammar, A. (2018). Late Pleistocene-Holocene history of a tectonically active segment of the continental margin (Nekor basin, Western Mediterranean, Morocco). Marine and Petroleum Geology, 97, 370-389. https://doi.org/10.1016/j.marpetgeo.2018.07.022
- Lambeck, K., Antonioli, F., Purcell, A., & Silenzi, S. (2004). Sea-level change along the Italian coast for the past 10,000 yr. Quaternary Science Re-views, 23(14-15), 1567-1598. https://doi.org/10.1016/j.quascirev.2004.02.009
- Leanza, U. (1993). The delimitation of the continental shelf of the Mediterranean Sea. The International Journal of Marine and Coastal Law, 8(3), 373-395. https://doi.org/10.1163/157180893X00125
- Lobo, F. J., Fernández-Salas, L. M., Moreno, I., Sanz, J. L., & Maldonado, A. (2006). The sea-floor morphology of a Mediterranean shelf fed by small rivers, northern Alboran Sea margin. Continental Shelf Research, 26(20), 2607-2628. https://doi.org/10.1016/j.csr.2006.08.006
- Mann, T., Bender, M., Lorscheid, T., Stocchi, P., Vacchi, M., Switzer, A. D., & Rovere, A. (2019). Holocene sea levels in southeast Asia, Maldives, India and Sri Lanka: the SEAMIS database. Quaternary Science Reviews, 219, 112-125. https://doi.org/10.1016/j.quascirev.2019.07.007
- Martinez, A., Kluiving, S., Muñoz‐Rojas, J., Borja Barrera, C., Fraile Jurado, P. (2022). From hunter-gatherer subsistence strategies to the Agricul-tural Revolution: Disentangling Energy Regimes as a complement to cultural phases in Northern Spain. The Holocene, 32(8), 884-896. https://doi.org/10.1177/09596836221095990
- Martinez, A., Kluiving, S., Muñoz‐Rojas, J., Borja Barrera, C., Fraile Jurado, P., Roldán Muñoz, M. E., & Mejías‐García, J. C. (2023). Energy regimes help tackle limitations with the prehistoric cultural‐phases approach to learn about sustainable transitions: Archaeological evidence from northern Spain. Journal of Quaternary Science, 38(6), 921-937 https://doi.org/10.1002/jqs.3522
- McGinley, G. P. (1985). Intervention in the International Court: The Libya/Malta Continental Shelf Case. International & Comparative Law Quar-terly, 34(4), 671-694. https://doi.org/10.1093/iclqaj/34.4.671
- Ojeda-Zújar, J., Fraile-Jurado, P., & Álvarez-Francoso, J. (2021). Sea level rise inundation risk assessment in residential cadastral parcels along the Mediterranean Andalusian coast. Cuadernos de Investigación Geográfica, 47(1), 243-263. https://doi.org/10.18172/cig.4744
- Riechers, K., Gottwald, G., & Boers, N. (2024). Glacial abrupt climate change as a multiscale phenomenon resulting from monostable excitable dynamics. Journal of Climate, 37(8), 2741-2763. https://doi.org/10.1175/JCLI-D-23-0308.1
- Roach, J. A., & Smith, R. W. (1994). Identification of Excessive Maritime Claims. International Law Studies, 66(1), 16. https://digital-commons.usnwc.edu/ils/vol66/iss1/16/
- Roy, S., Pandit, S., Papia, M., Rahman, M. M., Ocampo, J. C. O. R., Razi, M. A., Fraile-Jurado, P., Ahmed, N., Hoque, M.A., Hasan, M., Yeasmin, J. & Hossain, M. S. (2021). Coastal erosion risk assessment in the dynamic estuary: The Meghna estuary case of Bangladesh coast. International Journal of Disaster Risk Reduction, 61, 102364. https://doi.org/10.1016/j.ijdrr.2021.102364
- Roy, K., & Peltier, W. R. (2018). Relative sea level in the Western Mediterranean basin: a regional test of the ICE-7G_NA (VM7) model and a con-straint on late Holocene Antarctic deglaciation. Quaternary Science Reviews, 183, 76-87. https://10.1016/j.quascirev.2017.12.021
- Sánchez-Carnero, N., Aceña, S., Rodríguez-Pérez, D., Couñago, E., Fraile, P., & Freire, J. (2012). Fast and low-cost method for VBES bathymetry generation in coastal areas. Estuarine, Coastal and Shelf Science, 114, 175-182. https://doi.org/10.1016/j.ecss.2012.08.018
- Siermann, J., Harvey, C., Morgan, G., & Heege, T. (2014). Satellite derived bathymetry and digital elevation models (DEM). In IPTC 2014: Interna-tional Petroleum Technology Conference (pp. cp-395). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609-pdb.395.IPTC-17346-MS
- Vacchi, M., Marriner, N., Morhange, C., Spada, G., Fontana, A., & Rovere, A. (2016). Multiproxy assessment of Holocene relative sea-level chang-es in the western Mediterranean: Sea-level variability and improvements in the definition of the isostatic signal. Earth-Science Reviews, 155, 172-197. https://doi.org/10.1016/j.earscirev.2016.02.002
- Younes, A., Ahmad, A., Hanjagi, A. D., & Nair, A. M. (2023). Understanding dynamics of land use & land cover change using GIS & change detec-tion techniques in Tartous, Syria. European Journal of Geography, 14(3), 20–41. https://doi.org/10.48088/ejg.a.you.14.3.020.041