Vol. 16 No. 2 (2025): (Regular Issue in Progress)
Research Article

Identification of Potential Paleoislands in the Mediterranean Sea During the Last Glacial Cycle

Pablo Fraile Jurado
Universidad de Sevilla, Spain
Álvarez-Francoso, J. I., Ojeda-Zújar, J., Díaz-Cuevas, P., Guisado-Pintado, E., Camarillo-Naranjo, J. M., Prieto-Campos, A., & Fraile-Jurado, P. (2020). A Specialized Geoviewer and Dashboard for Beach Erosion Rates Visualization and Exploration. Journal of Coastal Research, 95(SI), 1006-1010. https://doi.org/10.2112/SI95-196.1 Amante, C. J., & Eakins, B. W. (2016). Accuracy of interpolated bathymetry in digital elevation models. Journal of Coastal Research, (76), 123-133. https://doi.org/10.2112/SI76-011 Antonioli, F., Anzidei, M., Lambeck, K., Auriemma, R., Gaddi, D., Furlani, S., & Surace, L. (2007). Sea-level change during the Holocene in Sardinia and in the northeastern Adriatic (central Mediterranean Sea) from archaeological and geomorphological data. Quaternary Science Reviews, 26(19-21), 2463-2486. https://doi.org/10.1016/j.quascirev.2007.06.022 Antonioli, F., Calcagnile, L., Ferranti, L., Mastronuzzi, G., Monaco, C., Orrù, P., & Taviani, M. (2021). New evidence of mis 3 relative sea level changes from the messina strait, Calabria (Italy). Water, 13(19), 2647. https://doi.org/10.3390/w13192647 Bezinska, G. V., & Stoyanov, K. S. (2019). Modelling and hydro morphometric analysis of sub watershed: A case study of Mesta River, southwest-ern Bulgaria. European Journal of Geography, 10(2), 77–88. https://www.eurogeojournal.eu/index.php/egj/article/view/177  Björck, S., Lambeck, K., Möller, P., Waldmann, N., Bennike, O., Jiang, H. & Porter, C. T. (2021). Relative sea level changes and glacio-isostatic modelling in the Beagle Channel, Tierra del Fuego, Chile: Glacial and tectonic implications. Quaternary Science Reviews, 251, 106657. https://doi.org/10.1016/j.quascirev.2020.106657 Clement, A. C., & Peterson, L. C. (2008). Mechanisms of abrupt climate change of the last glacial period. Reviews of Geophysics, 46(4). https://doi.org/10.1029/2006RG000204 Cooper, J. A. G., Green, A. N., & Compton, J. S. (2018). Sea-level change in southern Africa since the Last Glacial Maximum. Quaternary Science Reviews, 201, 303-318. https://doi.org/10.1016/j.quascirev.2018.10.013 Deiana, G., Lecca, L., Melis, R. T., Soldati, M., Demurtas, V., & Orrù, P. E. (2021). Submarine geomorphology of the southwestern Sardinian conti-nental shelf (Mediterranean Sea): Insights into the LGM sea-level changes and related environments. Water, 13(2), 155. https://doi.org/10.3390/w13020155 Díaz-Cuevas, P., Prieto-Campos, A., Fraile-Jurado, P., Ojeda-Zújar, J., & Álvarez-Francoso, J. I. (2020). Shoreline" Proxies" Evaluation for Mid-term Erosion Rates Calculation in Mesotidal and Microtidal Beaches (Andalusia, Spain). Journal of Coastal Research, 95(SI), 1062-1066. https://doi.org/10.2112/SI95-207.1 Domzig, A., Yelles, K., Le Roy, C., Déverchère, J., Bouillin, J. P., Bracène, R. & Pauc, H. (2006). Searching for the Africa–Eurasia Miocene boundary offshore western Algeria (MARADJA'03 cruise). Comptes Rendus Geoscience, 338(1-2), 80-91. https://doi.org/10.1016/j.crte.2005.11.009 Dutton, A., Villa, A., & Chutcharavan, P. M. (2022). Compilation of Last Interglacial (Marine Isotope Stage 5e) sea-level indicators in the Bahamas, Turks and Caicos, and the east coast of Florida, USA. Earth System Science Data, 14(5), 2385-2399. https://doi.org/10.5194/essd-14-2385-2022 Enrichetti, F., Dominguez-Carrió, C., Toma, M., Bavestrello, G., Canese, S., & Bo, M. (2020). Assessment and distribution of seafloor litter on the deep Ligurian continental shelf and shelf break (NW Mediterranean Sea). Marine Pollution Bulletin, 151, 110872. https://doi.org/10.1016/j.marpolbul.2019.110872 Ergin, M., Kazan, B., & Ediger, V. (1996). Source and depositional controls on heavy metal distribution in marine sediments of the Gulf of Isken-derun, Eastern Mediterranean. Marine Geology, 133(3-4), 223-239. https://doi.org/10.1016/0025-3227(96)00011-4 Foutrakis, P. M., & Anastasakis, G. (2020). Quaternary continental shelf basins of Saronikos Gulf, Aegean Sea. Geo-Marine Letters, 40(5), 629-647. https://doi.org/10.1007/s00367-020-00653-9 Fraile-Jurado, P., Iglesias-Campos, A., Simon-Colina, A., & Hodgson, N. (2019). Methods for assessing current and future coastal vulnerability to sea level rise. A review for a case-study in Europe. European Journal of Geography, 10(3), 97-119. https://www.eurogeojournal.eu/index.php/egj/article/view/194    Fraile-Jurado, P, Mejías-García, J.C., Roldán-Muñoz, E., & Borja-Barrera, C. (2024) Reconstructing the Emerged Areas of the Mediterranean Dur-ing the Last Glaciation Using Bathymetric Data. Geografia Fisica e Dinamica Quaternaria, 46, 241-256. https://doi.org/10.4454/hrffie9  Fraile-Jurado, P., & Mejías-García, J. C. (2022). Método para el cálculo, análisis y representación espacial de la variable" tiempo sumergido bajo el nivel del mar durante la última glaciación" en la plataforma continental del Golfo de Cádiz (España y Portugal). Revista de Geografía Norte Grande, (81), 183-205. https://doi.org/10.4067/S0718-34022022000100183 Fraile-Jurado, P., & Ojeda-Zújar, J. (2013). The importance of the vertical accuracy of digital elevation models in gauging inundation by sea level rise along the Valdelagrana beach and marshes (Bay of Cádiz, SW Spain). Geo-Marine Letters, 33, 225-230. https://doi.org/10.1007/s00367-012-0317-8 Fraile-Jurado, P. (2018). Assessing future local sea level rise in the islands of the outermost regions of the European Union. European Journal of Geography, 9(2), 54-65. https://eurogeojournal.eu/index.php/egj/article/view/135  Frihy, O. E., Nasr, S. M., Ahmed, M. H., & El Raey, M. (1991). Temporal shoreline and bottom changes of the inner continental shelf off the Nile Delta, Egypt. Journal of Coastal Research, 465-475. http://www.jstor.org/stable/4297852 Gao, J. (2009). Bathymetric mapping by means of remote sensing: methods, accuracy and limitations. Progress in Physical Geography, 33(1), 103-116. https://doi.org/10.1177/0309133309105657 Hojati, M., & Mokarram, M. (2016). Determination of a topographic wetness index using high resolution digital elevation models. European Journal of Geography, 7(4), 41–52. https://www.eurogeojournal.eu/index.php/egj/article/view/382   Ishiwa, T., Yokoyama, Y., Miyairi, Y., Obrochta, S., Sasaki, T., Kitamura, A., & Matsuzaki, H. (2016). Reappraisal of sea-level lowstand during the Last Glacial Maximum observed in the Bonaparte Gulf sediments, northwestern Australia. Quaternary International, 397, 373-379. https://doi.org/10.1186/s40562-016-0065-0 Khan, N. S., Horton, B. P., Engelhart, S., Rovere, A., Vacchi, M., Ashe, E. L., & Shennan, I. (2019). Inception of a global atlas of sea levels since the Last Glacial Maximum. Quaternary Science Reviews, 220, 359-371. https://doi.org/10.1016/j.quascirev.2019.07.016 Kholeif, S. E. H., & Ibrahim, M. I. (2010). Palynofacies analysis of inner continental shelf and middle slope sediments offshore Egypt, south-eastern Mediterranean. Geobios, 43(3), 333-347. https://doi.org/10.1016/J.GEOBIOS.2009.10.006 Lafosse, M., Gorini, C., Le Roy, P., Alonso, B., d’Acremont, E., Ercilla, G., & Ammar, A. (2018). Late Pleistocene-Holocene history of a tectonically active segment of the continental margin (Nekor basin, Western Mediterranean, Morocco). Marine and Petroleum Geology, 97, 370-389. https://doi.org/10.1016/j.marpetgeo.2018.07.022 Lambeck, K., Antonioli, F., Purcell, A., & Silenzi, S. (2004). Sea-level change along the Italian coast for the past 10,000 yr. Quaternary Science Re-views, 23(14-15), 1567-1598. https://doi.org/10.1016/j.quascirev.2004.02.009 Leanza, U. (1993). The delimitation of the continental shelf of the Mediterranean Sea. The International Journal of Marine and Coastal Law, 8(3), 373-395. https://doi.org/10.1163/157180893X00125 Lobo, F. J., Fernández-Salas, L. M., Moreno, I., Sanz, J. L., & Maldonado, A. (2006). The sea-floor morphology of a Mediterranean shelf fed by small rivers, northern Alboran Sea margin. Continental Shelf Research, 26(20), 2607-2628. https://doi.org/10.1016/j.csr.2006.08.006 Mann, T., Bender, M., Lorscheid, T., Stocchi, P., Vacchi, M., Switzer, A. D., & Rovere, A. (2019). Holocene sea levels in southeast Asia, Maldives, India and Sri Lanka: the SEAMIS database. Quaternary Science Reviews, 219, 112-125. https://doi.org/10.1016/j.quascirev.2019.07.007 Martinez, A., Kluiving, S., Muñoz‐Rojas, J., Borja Barrera, C., Fraile Jurado, P. (2022). From hunter-gatherer subsistence strategies to the Agricul-tural Revolution: Disentangling Energy Regimes as a complement to cultural phases in Northern Spain. The Holocene, 32(8), 884-896. https://doi.org/10.1177/09596836221095990 Martinez, A., Kluiving, S., Muñoz‐Rojas, J., Borja Barrera, C., Fraile Jurado, P., Roldán Muñoz, M. E., & Mejías‐García, J. C. (2023). Energy regimes help tackle limitations with the prehistoric cultural‐phases approach to learn about sustainable transitions: Archaeological evidence from northern Spain. Journal of Quaternary Science, 38(6), 921-937 https://doi.org/10.1002/jqs.3522 McGinley, G. P. (1985). Intervention in the International Court: The Libya/Malta Continental Shelf Case. International & Comparative Law Quar-terly, 34(4), 671-694. https://doi.org/10.1093/iclqaj/34.4.671 Ojeda-Zújar, J., Fraile-Jurado, P., & Álvarez-Francoso, J. (2021). Sea level rise inundation risk assessment in residential cadastral parcels along the Mediterranean Andalusian coast. Cuadernos de Investigación Geográfica, 47(1), 243-263. https://doi.org/10.18172/cig.4744  Riechers, K., Gottwald, G., & Boers, N. (2024). Glacial abrupt climate change as a multiscale phenomenon resulting from monostable excitable dynamics. Journal of Climate, 37(8), 2741-2763. https://doi.org/10.1175/JCLI-D-23-0308.1 Roach, J. A., & Smith, R. W. (1994). Identification of Excessive Maritime Claims. International Law Studies, 66(1), 16. https://digital-commons.usnwc.edu/ils/vol66/iss1/16/ Roy, S., Pandit, S., Papia, M., Rahman, M. M., Ocampo, J. C. O. R., Razi, M. A., Fraile-Jurado, P., Ahmed, N., Hoque, M.A., Hasan, M., Yeasmin, J. & Hossain, M. S. (2021). Coastal erosion risk assessment in the dynamic estuary: The Meghna estuary case of Bangladesh coast. International Journal of Disaster Risk Reduction, 61, 102364. https://doi.org/10.1016/j.ijdrr.2021.102364 Roy, K., & Peltier, W. R. (2018). Relative sea level in the Western Mediterranean basin: a regional test of the ICE-7G_NA (VM7) model and a con-straint on late Holocene Antarctic deglaciation. Quaternary Science Reviews, 183, 76-87. https://10.1016/j.quascirev.2017.12.021  Sánchez-Carnero, N., Aceña, S., Rodríguez-Pérez, D., Couñago, E., Fraile, P., & Freire, J. (2012). Fast and low-cost method for VBES bathymetry generation in coastal areas. Estuarine, Coastal and Shelf Science, 114, 175-182. https://doi.org/10.1016/j.ecss.2012.08.018 Siermann, J., Harvey, C., Morgan, G., & Heege, T. (2014). Satellite derived bathymetry and digital elevation models (DEM). In IPTC 2014: Interna-tional Petroleum Technology Conference (pp. cp-395). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609-pdb.395.IPTC-17346-MS Vacchi, M., Marriner, N., Morhange, C., Spada, G., Fontana, A., & Rovere, A. (2016). Multiproxy assessment of Holocene relative sea-level chang-es in the western Mediterranean: Sea-level variability and improvements in the definition of the isostatic signal. Earth-Science Reviews, 155, 172-197. https://doi.org/10.1016/j.earscirev.2016.02.002 Younes, A., Ahmad, A., Hanjagi, A. D., & Nair, A. M. (2023). Understanding dynamics of land use & land cover change using GIS & change detec-tion techniques in Tartous, Syria. European Journal of Geography, 14(3), 20–41. https://doi.org/10.48088/ejg.a.you.14.3.020.041

Published 2025-07-04

Keywords

  • Paleoislands,
  • Last Glacial Period,
  • Mediterranean Sea,
  • Sea-level changes,
  • Bathymetry,
  • Paleogeography
  • ...More
    Less

How to Cite

Fraile Jurado, Pablo, and Juan Carlos Mejías-García. 2025. “Identification of Potential Paleoislands in the Mediterranean Sea During the Last Glacial Cycle”. European Journal of Geography 16 (2):241-55. https://doi.org/10.48088/ejg.p.jur.16.2.241.255.
Received 2025-04-18
Accepted 2025-07-02
Published 2025-07-04

Abstract

The Last Glacial Period (LGP) significantly altered sea levels and landscapes across the globe, with the Mediterranean Sea being no exception. During this period, fluctuating sea levels exposed numerous landmasses, some of which may have served as critical habitats for plants, animals, and even human populations. This study aims to identify and analyze the potential paleo-islands that were emerged in the Mediterranean Sea during the LGP (115,000 – 6,500 BP). Using high-resolution digital elevation models (DEMs) and bathymetric data, we reconstruct the Mediterranean’s paleogeography, focusing on the periods of maximum sea-level regression. A novel methodological approach was applied to determine the duration and extent of these paleo-islands, while filtering out uncertainties related to their size and elevation. Results show the existence of hundreds of potential paleo-islands, including larger landmasses that significantly expanded during this period. This research highlights the critical role these islands played in biogeographical processes, such as species migration and dispersal, and possibly in the migration patterns of early humans. Future work will focus on refining the data with localized sea-level curves and incorporating sedimentary and erosion processes into the analysis, providing a more comprehensive understanding of the Mediterranean’s geomorphological evolution

Highlights:

  • Sea-level fluctuations during the LGP significantly altered Mediterranean landmasses.
  • Identification of paleo-islands in the Mediterranean during the Last Glacial Period.

Downloads

Download data is not yet available.

References

  1. Álvarez-Francoso, J. I., Ojeda-Zújar, J., Díaz-Cuevas, P., Guisado-Pintado, E., Camarillo-Naranjo, J. M., Prieto-Campos, A., & Fraile-Jurado, P. (2020). A Specialized Geoviewer and Dashboard for Beach Erosion Rates Visualization and Exploration. Journal of Coastal Research, 95(SI), 1006-1010. https://doi.org/10.2112/SI95-196.1
  2. Amante, C. J., & Eakins, B. W. (2016). Accuracy of interpolated bathymetry in digital elevation models. Journal of Coastal Research, (76), 123-133. https://doi.org/10.2112/SI76-011
  3. Antonioli, F., Anzidei, M., Lambeck, K., Auriemma, R., Gaddi, D., Furlani, S., & Surace, L. (2007). Sea-level change during the Holocene in Sardinia and in the northeastern Adriatic (central Mediterranean Sea) from archaeological and geomorphological data. Quaternary Science Reviews, 26(19-21), 2463-2486. https://doi.org/10.1016/j.quascirev.2007.06.022
  4. Antonioli, F., Calcagnile, L., Ferranti, L., Mastronuzzi, G., Monaco, C., Orrù, P., & Taviani, M. (2021). New evidence of mis 3 relative sea level changes from the messina strait, Calabria (Italy). Water, 13(19), 2647. https://doi.org/10.3390/w13192647
  5. Bezinska, G. V., & Stoyanov, K. S. (2019). Modelling and hydro morphometric analysis of sub watershed: A case study of Mesta River, southwest-ern Bulgaria. European Journal of Geography, 10(2), 77–88. https://www.eurogeojournal.eu/index.php/egj/article/view/177
  6. Björck, S., Lambeck, K., Möller, P., Waldmann, N., Bennike, O., Jiang, H. & Porter, C. T. (2021). Relative sea level changes and glacio-isostatic modelling in the Beagle Channel, Tierra del Fuego, Chile: Glacial and tectonic implications. Quaternary Science Reviews, 251, 106657. https://doi.org/10.1016/j.quascirev.2020.106657
  7. Clement, A. C., & Peterson, L. C. (2008). Mechanisms of abrupt climate change of the last glacial period. Reviews of Geophysics, 46(4). https://doi.org/10.1029/2006RG000204
  8. Cooper, J. A. G., Green, A. N., & Compton, J. S. (2018). Sea-level change in southern Africa since the Last Glacial Maximum. Quaternary Science Reviews, 201, 303-318. https://doi.org/10.1016/j.quascirev.2018.10.013
  9. Deiana, G., Lecca, L., Melis, R. T., Soldati, M., Demurtas, V., & Orrù, P. E. (2021). Submarine geomorphology of the southwestern Sardinian conti-nental shelf (Mediterranean Sea): Insights into the LGM sea-level changes and related environments. Water, 13(2), 155. https://doi.org/10.3390/w13020155
  10. Díaz-Cuevas, P., Prieto-Campos, A., Fraile-Jurado, P., Ojeda-Zújar, J., & Álvarez-Francoso, J. I. (2020). Shoreline" Proxies" Evaluation for Mid-term Erosion Rates Calculation in Mesotidal and Microtidal Beaches (Andalusia, Spain). Journal of Coastal Research, 95(SI), 1062-1066. https://doi.org/10.2112/SI95-207.1
  11. Domzig, A., Yelles, K., Le Roy, C., Déverchère, J., Bouillin, J. P., Bracène, R. & Pauc, H. (2006). Searching for the Africa–Eurasia Miocene boundary offshore western Algeria (MARADJA'03 cruise). Comptes Rendus Geoscience, 338(1-2), 80-91. https://doi.org/10.1016/j.crte.2005.11.009
  12. Dutton, A., Villa, A., & Chutcharavan, P. M. (2022). Compilation of Last Interglacial (Marine Isotope Stage 5e) sea-level indicators in the Bahamas, Turks and Caicos, and the east coast of Florida, USA. Earth System Science Data, 14(5), 2385-2399. https://doi.org/10.5194/essd-14-2385-2022
  13. Enrichetti, F., Dominguez-Carrió, C., Toma, M., Bavestrello, G., Canese, S., & Bo, M. (2020). Assessment and distribution of seafloor litter on the deep Ligurian continental shelf and shelf break (NW Mediterranean Sea). Marine Pollution Bulletin, 151, 110872. https://doi.org/10.1016/j.marpolbul.2019.110872
  14. Ergin, M., Kazan, B., & Ediger, V. (1996). Source and depositional controls on heavy metal distribution in marine sediments of the Gulf of Isken-derun, Eastern Mediterranean. Marine Geology, 133(3-4), 223-239. https://doi.org/10.1016/0025-3227(96)00011-4
  15. Foutrakis, P. M., & Anastasakis, G. (2020). Quaternary continental shelf basins of Saronikos Gulf, Aegean Sea. Geo-Marine Letters, 40(5), 629-647. https://doi.org/10.1007/s00367-020-00653-9
  16. Fraile-Jurado, P., Iglesias-Campos, A., Simon-Colina, A., & Hodgson, N. (2019). Methods for assessing current and future coastal vulnerability to sea level rise. A review for a case-study in Europe. European Journal of Geography, 10(3), 97-119. https://www.eurogeojournal.eu/index.php/egj/article/view/194
  17. Fraile-Jurado, P, Mejías-García, J.C., Roldán-Muñoz, E., & Borja-Barrera, C. (2024) Reconstructing the Emerged Areas of the Mediterranean Dur-ing the Last Glaciation Using Bathymetric Data. Geografia Fisica e Dinamica Quaternaria, 46, 241-256. https://doi.org/10.4454/hrffie9
  18. Fraile-Jurado, P., & Mejías-García, J. C. (2022). Método para el cálculo, análisis y representación espacial de la variable" tiempo sumergido bajo el nivel del mar durante la última glaciación" en la plataforma continental del Golfo de Cádiz (España y Portugal). Revista de Geografía Norte Grande, (81), 183-205. https://doi.org/10.4067/S0718-34022022000100183
  19. Fraile-Jurado, P., & Ojeda-Zújar, J. (2013). The importance of the vertical accuracy of digital elevation models in gauging inundation by sea level rise along the Valdelagrana beach and marshes (Bay of Cádiz, SW Spain). Geo-Marine Letters, 33, 225-230. https://doi.org/10.1007/s00367-012-0317-8
  20. Fraile-Jurado, P. (2018). Assessing future local sea level rise in the islands of the outermost regions of the European Union. European Journal of Geography, 9(2), 54-65. https://eurogeojournal.eu/index.php/egj/article/view/135
  21. Frihy, O. E., Nasr, S. M., Ahmed, M. H., & El Raey, M. (1991). Temporal shoreline and bottom changes of the inner continental shelf off the Nile Delta, Egypt. Journal of Coastal Research, 465-475. http://www.jstor.org/stable/4297852
  22. Gao, J. (2009). Bathymetric mapping by means of remote sensing: methods, accuracy and limitations. Progress in Physical Geography, 33(1), 103-116. https://doi.org/10.1177/0309133309105657
  23. Hojati, M., & Mokarram, M. (2016). Determination of a topographic wetness index using high resolution digital elevation models. European Journal of Geography, 7(4), 41–52. https://www.eurogeojournal.eu/index.php/egj/article/view/382
  24. Ishiwa, T., Yokoyama, Y., Miyairi, Y., Obrochta, S., Sasaki, T., Kitamura, A., & Matsuzaki, H. (2016). Reappraisal of sea-level lowstand during the Last Glacial Maximum observed in the Bonaparte Gulf sediments, northwestern Australia. Quaternary International, 397, 373-379. https://doi.org/10.1186/s40562-016-0065-0
  25. Khan, N. S., Horton, B. P., Engelhart, S., Rovere, A., Vacchi, M., Ashe, E. L., & Shennan, I. (2019). Inception of a global atlas of sea levels since the Last Glacial Maximum. Quaternary Science Reviews, 220, 359-371. https://doi.org/10.1016/j.quascirev.2019.07.016
  26. Kholeif, S. E. H., & Ibrahim, M. I. (2010). Palynofacies analysis of inner continental shelf and middle slope sediments offshore Egypt, south-eastern Mediterranean. Geobios, 43(3), 333-347. https://doi.org/10.1016/J.GEOBIOS.2009.10.006
  27. Lafosse, M., Gorini, C., Le Roy, P., Alonso, B., d’Acremont, E., Ercilla, G., & Ammar, A. (2018). Late Pleistocene-Holocene history of a tectonically active segment of the continental margin (Nekor basin, Western Mediterranean, Morocco). Marine and Petroleum Geology, 97, 370-389. https://doi.org/10.1016/j.marpetgeo.2018.07.022
  28. Lambeck, K., Antonioli, F., Purcell, A., & Silenzi, S. (2004). Sea-level change along the Italian coast for the past 10,000 yr. Quaternary Science Re-views, 23(14-15), 1567-1598. https://doi.org/10.1016/j.quascirev.2004.02.009
  29. Leanza, U. (1993). The delimitation of the continental shelf of the Mediterranean Sea. The International Journal of Marine and Coastal Law, 8(3), 373-395. https://doi.org/10.1163/157180893X00125
  30. Lobo, F. J., Fernández-Salas, L. M., Moreno, I., Sanz, J. L., & Maldonado, A. (2006). The sea-floor morphology of a Mediterranean shelf fed by small rivers, northern Alboran Sea margin. Continental Shelf Research, 26(20), 2607-2628. https://doi.org/10.1016/j.csr.2006.08.006
  31. Mann, T., Bender, M., Lorscheid, T., Stocchi, P., Vacchi, M., Switzer, A. D., & Rovere, A. (2019). Holocene sea levels in southeast Asia, Maldives, India and Sri Lanka: the SEAMIS database. Quaternary Science Reviews, 219, 112-125. https://doi.org/10.1016/j.quascirev.2019.07.007
  32. Martinez, A., Kluiving, S., Muñoz‐Rojas, J., Borja Barrera, C., Fraile Jurado, P. (2022). From hunter-gatherer subsistence strategies to the Agricul-tural Revolution: Disentangling Energy Regimes as a complement to cultural phases in Northern Spain. The Holocene, 32(8), 884-896. https://doi.org/10.1177/09596836221095990
  33. Martinez, A., Kluiving, S., Muñoz‐Rojas, J., Borja Barrera, C., Fraile Jurado, P., Roldán Muñoz, M. E., & Mejías‐García, J. C. (2023). Energy regimes help tackle limitations with the prehistoric cultural‐phases approach to learn about sustainable transitions: Archaeological evidence from northern Spain. Journal of Quaternary Science, 38(6), 921-937 https://doi.org/10.1002/jqs.3522
  34. McGinley, G. P. (1985). Intervention in the International Court: The Libya/Malta Continental Shelf Case. International & Comparative Law Quar-terly, 34(4), 671-694. https://doi.org/10.1093/iclqaj/34.4.671
  35. Ojeda-Zújar, J., Fraile-Jurado, P., & Álvarez-Francoso, J. (2021). Sea level rise inundation risk assessment in residential cadastral parcels along the Mediterranean Andalusian coast. Cuadernos de Investigación Geográfica, 47(1), 243-263. https://doi.org/10.18172/cig.4744
  36. Riechers, K., Gottwald, G., & Boers, N. (2024). Glacial abrupt climate change as a multiscale phenomenon resulting from monostable excitable dynamics. Journal of Climate, 37(8), 2741-2763. https://doi.org/10.1175/JCLI-D-23-0308.1
  37. Roach, J. A., & Smith, R. W. (1994). Identification of Excessive Maritime Claims. International Law Studies, 66(1), 16. https://digital-commons.usnwc.edu/ils/vol66/iss1/16/
  38. Roy, S., Pandit, S., Papia, M., Rahman, M. M., Ocampo, J. C. O. R., Razi, M. A., Fraile-Jurado, P., Ahmed, N., Hoque, M.A., Hasan, M., Yeasmin, J. & Hossain, M. S. (2021). Coastal erosion risk assessment in the dynamic estuary: The Meghna estuary case of Bangladesh coast. International Journal of Disaster Risk Reduction, 61, 102364. https://doi.org/10.1016/j.ijdrr.2021.102364
  39. Roy, K., & Peltier, W. R. (2018). Relative sea level in the Western Mediterranean basin: a regional test of the ICE-7G_NA (VM7) model and a con-straint on late Holocene Antarctic deglaciation. Quaternary Science Reviews, 183, 76-87. https://10.1016/j.quascirev.2017.12.021
  40. Sánchez-Carnero, N., Aceña, S., Rodríguez-Pérez, D., Couñago, E., Fraile, P., & Freire, J. (2012). Fast and low-cost method for VBES bathymetry generation in coastal areas. Estuarine, Coastal and Shelf Science, 114, 175-182. https://doi.org/10.1016/j.ecss.2012.08.018
  41. Siermann, J., Harvey, C., Morgan, G., & Heege, T. (2014). Satellite derived bathymetry and digital elevation models (DEM). In IPTC 2014: Interna-tional Petroleum Technology Conference (pp. cp-395). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609-pdb.395.IPTC-17346-MS
  42. Vacchi, M., Marriner, N., Morhange, C., Spada, G., Fontana, A., & Rovere, A. (2016). Multiproxy assessment of Holocene relative sea-level chang-es in the western Mediterranean: Sea-level variability and improvements in the definition of the isostatic signal. Earth-Science Reviews, 155, 172-197. https://doi.org/10.1016/j.earscirev.2016.02.002
  43. Younes, A., Ahmad, A., Hanjagi, A. D., & Nair, A. M. (2023). Understanding dynamics of land use & land cover change using GIS & change detec-tion techniques in Tartous, Syria. European Journal of Geography, 14(3), 20–41. https://doi.org/10.48088/ejg.a.you.14.3.020.041