Comparison and theoretical conceptualization analysis of statistical methods used to develop heat vulnerability indices in urban areas
Published 2024-08-16
Keywords
- Heat vulnerability,
- Statistical index,
- Spatial analysis,
- Results comparison,
- Urban Heat Island
- Toulouse Métropole ...More
How to Cite
Copyright (c) 2024 Thomas Lagelouze, Julia Hidalgo, Mitia Aranda, Guillaume Dumas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-07-01
Published 2024-08-16
Abstract
In view of the impact of extreme temperatures on physical and psychological health, particularly in urban areas, several studies have focused on assessing social vulnerability using quantitative indexing approaches with the aim of creating a heat vulnerability index (HVI). In this context, this study employs three statistical methodologies frequently used to construct HVIs on the territory of the Toulouse Métropole, France, at the census block (IRIS) scale to assess the efficiency of this type of approach for evaluating social vulnerability in urban environments considering the current theoretical conceptualization. The three HVIs show the same general trends, with a spatial configuration in which high levels of vulnerability are concentrated in the downtown and suburbs of the Toulouse municipality. Vulnerability gradually decreases away from the urban core, becoming moderate in the inner suburbs and low on the outskirts. However, a spatial analysis of the clusters reveals variability in the boundaries of the vulnerability hotspots. Value class matching indicates that a significant number of census blocks are classified differently according to the method considered. These results raise questions concerning the ability of HVIs to provide reliable vulnerability assessments, given their geostatistical and conceptual limitations. Indexing approaches therefore appear to contradict current theoretical conceptualizations promoting the concept of vulnerability as being complex and multifactorial.
Highlights:
- Heat vulnerability indices (HVIs) using three common methodologies are developed.
- Numerous census blocks are categorized differently based on the specific HVI used.
- Alternative approaches for future vulnerability assessments need to be explored.
Downloads
References
- Alonso, L., & Renard, F. (2020). A Comparative Study of the Physiological and Socio-Economic Vulnerabilities to Heat Waves of the Population of the Metropolis of Lyon (France) in a Climate Change Context. International Journal of Environmental Research and Public Health, 17(3), Article 3. https://doi.org/10.3390/ijerph17031004
- Anastassakos, I., & d’Aubigny, G. (1984). L’utilisation des tests de sphéricité pour la recherche de la dimension de l’espace latent en analyse factorielle classique et en analyse en composantes principales. Revue de Statistique Appliquée, 32(2), 45–57. http://www.numdam.org/item/RSA_1984__32_2_45_0/
- Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2), 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
- Ballester, J., Quijal-Zamorano, M., Méndez Turrubiates, R. F., Pegenaute, F., Herrmann, F. R., Robine, J. M., Basagaña, X., Tonne, C., Antó, J. M., & Achebak, H. (2023). Heat-related mortality in Europe during the summer of 2022. Nature Medicine, 29(7), Article 7. https://doi.org/10.1038/s41591-023-02419-z
- Bao, J., Li, X., & Yu, C. (2015). The Construction and Validation of the Heat Vulnerability Index, a Review. International Journal of Environmental Research and Public Health, 12(7), 7220–7234. https://doi.org/10.3390/ijerph120707220-
- Becerra, S. (2012). Vulnérabilité, risques et environnement: L’itinéraire chaotique d’un paradigme sociologique contemporain. VertigO - la revue électronique en sciences de l’environnement, Volume 12 Numéro 1, Article Volume 12 Numéro 1. https://doi.org/10.4000/vertigo.11988
- Benmarhnia, T., Deguen, S., Kaufman, J. S., & Smargiassi, A. (2015). Review Article: Vulnerability to Heat-related Mortality: A Systematic Review, Meta-analysis, and Meta-regression Analysis. Epidemiology (Cambridge, Mass.), 26(6), 781–793. https://doi.org/10.1097/EDE.0000000000000375
- Benmarhnia, T., Kihal-Talantikite, W., Ragettli, M., & Deguen, S. (2017). Small-area spatiotemporal analysis of heatwave impacts on elderly mor-tality in Paris: A cluster analysis approach. Science of the Total Environment, 592, 288. https://doi.org/10.1016/j.scitotenv.2017.03.102
- Berger, J.-L. (2022). Analyse factorielle exploratoire et analyse en composantes principales: Guide pratique. https://doi.org/10.13140/RG.2.2.16206.18246
- Blaikie, P., Cannon, T., Davis, I., & Wisner, B. (Eds.). (1994). At risk: Natural hazards, people’s vulnerability, and disasters (1. publ). Routledge.
- Chavent, M., Kuentz-Simonet, V., Labenne, A., & Saracco, J. (2022). Multivariate Analysis of Mixed Data : The R Package PCAmixdata. https://doi.org/10.48550/arXiv.1411.4911
- Chavent, M., Kuentz-Simonet, V., Liquet, B., & Saracco, J. (2012). ClustOfVar: An R Package for the Clustering of Variables. Journal of Statistical Software, 50, 1–16. https://doi.org/10.18637/jss.v050.i13
- Choffel, P., & Heroguer, P. (2009). Population, démographie [SIG Ville]. Système d’Information Géographique de la politique de la Ville. https://sig.ville.gouv.fr/page/48
- Climate Copernicus. (2023). 2022 saw record temperatures in Europe and across the world. Climate Copernicus. https://climate.copernicus.eu/2022-saw-record-temperatures-europe-and-across-world
- Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555
- Cutter, S. (1996). Societal Vulnerability to Environmental Hazards. Progress in Human Geography, 20, 529–539. https://doi.org/10.1177/030913259602000407
- Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social Vulnerability to Environmental Hazards. Social Science Quarterly, 84(2), 242–261. https://doi.org/10.1111/1540-6237.8402002
- d’Ercole, R. (1998). Approches de la vulnérabilité et perspectives pour une meilleure logique de réduction des risques. Pangea infos, 29/30, 20.
- de Sherbinin, A., Bukvic, A., Rohat, G., Gall, M., McCusker, B., Preston, B., Apotsos, A., Fish, C., Kienberger, S., Muhonda, P., Wilhelmi, O., Macha-ria, D., Shubert, W., Sliuzas, R., Tomaszewski, B., & Zhang, S. (2019). Climate vulnerability mapping: A systematic review and future prospects. WIREs Climate Change, 10(5), e600. https://doi.org/10.1002/wcc.600
- Dousset, B., Gourmelon, F., Giraudet, E., Laaidi, K., Zeghnoun, A., Bretin, P., & Vandentorren, S. (2011). Evolution climatique et canicule en mi-lieu urbain: Apport de la télédétection à l’anticipation et à la gestion de l’impact sanitaire (p. 77). https://hal.archives-ouvertes.fr/hal-00620833
- Dubreuil, V. (2022). Le changement climatique en France illustré par la classification de Köppen. La Météorologie, 116, Article 116. https://doi.org/10.37053/lameteorologie-2022-0012
- Ebi, K. L., Capon, A., Berry, P., Broderick, C., Dear, R. de, Havenith, G., Honda, Y., Kovats, R. S., Ma, W., Malik, A., Morris, N. B., Nybo, L., Senevi-ratne, S. I., Vanos, J., & Jay, O. (2021). Hot weather and heat extremes: Health risks. The Lancet, 398(10301), 698–708. https://doi.org/10.1016/S0140-6736(21)01208-3
- Ebi, K. L., Vanos, J., Baldwin, J. W., Bell, J. E., Hondula, D. M., Errett, N. A., Hayes, K., Reid, C. E., Saha, S., Spector, J., & Berry, P. (2021). Extreme Weather and Climate Change: Population Health and Health System Implications. Annual Review of Public Health, 42(1), 293–315. https://doi.org/10.1146/annurev-publhealth-012420-105026
- Estevez B., Hidalgo J. and Bonhomme M. (2024). Anticipatory action and future living in a context of increasing temperatures: an analysis from the Barcelona Climate Shelter Network. Book chapter for Cities as Anticipatory Systems, Springer. Manuscript submitted for publication.
- Forceville, G., Lemonsu, A., Goria, S., Stempfelet, M., Host, S., Alessandrini, J.-M., Cordeau, E., & Pascal, M. (2024). Spatial contrasts and temporal changes in fine-scale heat exposure and vulnerability in the Paris region. Science of The Total Environment, 906, 167476. https://doi.org/10.1016/j.scitotenv.2023.167476
- Guo, X., Huang, G., Jia, P., & Wu, J. (2019). Estimating Fine-Scale Heat Vulnerability in Beijing Through Two Approaches: Spatial Patterns, Similari-ties, and Divergence. Remote Sensing, 11(20), Article 20. https://doi.org/10.3390/rs11202358
- Huang, G., Zhou, W., & Cadenasso, M. L. (2011). Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neigh-borhood socioeconomic characteristics in Baltimore, MD. Journal of Environmental Management, 92(7), 1753–1759. https://doi.org/10.1016/j.jenvman.2011.02.006
- Inostroza, L., Palme, M., & de la Barrera, F. (2016). A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile. PloS One, 11(9), e0162464. https://doi.org/10.1371/journal.pone.0162464
- Insee. (2024). Découpage infracommunal | Insee [Institutionnel]. Institut national de la statistique et des études économiques (INSEE). https://www.insee.fr/fr/information/2017499
- Insee. (2024). Dossier complet − Intercommunalité-Métropole de Toulouse Métropole (243100518) | Insee [Institutionnel]. Institut national de la statistique et des études économiques (INSEE). https://www.insee.fr/fr/statistiques/2011101?geo=EPCI-243100518#chiffre-cle-1
- Inserm. (2004). Surmortalité liée à la canicule d’août 2003 (p. 76). https://www.inserm.fr/wp-content/uploads/2017-11/inserm-rapportthematique-surmortalitecaniculeaout2003-rapportfinal.pdf
- IPCC. (2021). Climate Change 2021 - The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergov-ernmental Panel on Climate Change (1re éd.). Cambridge University Press. https://doi:10.1017/9781009157896
- IPCC. (2023). Climate Change 2022 - Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1re éd.). Cambridge University Press. https://doi:10.1017/9781009325844
- Jung, M. C., Yost, M. G., Dannenberg, A. L., Dyson, K., & Alberti, M. (2024). Legacies of redlining lead to unequal cooling effects of urban tree canopy. Landscape and Urban Planning, 246(105028). https://doi.org/10.1016/j.landurbplan.2024.105028
- Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187–200. https://doi.org/10.1007/BF02289233
- Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36. https://doi.org/10.1007/BF02291575
- Karanja, J., & Kiage, L. (2021). Perspectives on spatial representation of urban heat vulnerability. Science of The Total Environment, 774, 145634. https://doi.org/10.1016/j.scitotenv.2021.145634
- Karanja, J., & Kiage, L. (2022). Scale implications and evolution of a social vulnerability index in Atlanta, Georgia, USA. Natural Hazards, 113(1), 789–812. https://doi.org/10.1007/s11069-022-05324-9
- Kastendeuch, P., Massing, N., Schott, E., Philipps, N., & Lecomte, K. (2023). Vulnérabilité et îlot de chaleur urbain: Les facteurs du risque ther-mique nocturne à Strasbourg. Climatologie, 20, 9. https://doi.org/10.1051/climat/202320009
- Laaidi, K., Zeghnoun, A., Dousset, B., Bretin, P., Vandentorren, S., Giraudet, E., & Beaudeau, P. (2012). The Impact of Heat Islands on Mortality in Paris during the August 2003 Heat Wave. Environmental Health Perspectives, 120(2), 254–259. https://doi.org/10.1289/ehp.1103532
- Lagelouze, T. (2022). Comparaison de méthodes d'évaluation statistiques de la vulnérabilité sociale à la hausse de la chaleur en milieu urbain : application aux métropoles de Toulouse, Grenoble, Lyon et Paris. Master 2 Mention « GAED » Parcours: GEOgraphie Information Interface Durabilité EnvironnementS. Université Grenoble Alpes, 69 p. https://dumas.ccsd.cnrs.fr/dumas-03774994 ;
- Lemarque, M. (2023, août 26). Toulouse. 2003 ou 2023 : Quelle canicule a été la plus sévère selon Météo France ? actu.fr. https://actu.fr/occitanie/toulouse_31555/toulouse-2003-ou-2023-quelle-canicule-a-ete-la-plus-severe-selon-meteo-france_60000605.html
- Lemonsu, A., Viguié, V., Daniel, M., & Masson, V. (2015). Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Climate, 14, 586–605. https://doi.org/10.1016/j.uclim.2015.10.007
- Li, D., & Bou-Zeid, E. (2013). Synergistic Interactions between Urban Heat Islands and Heat Waves: The Impact in Cities Is Larger than the Sum of Its Parts. Journal of Applied Meteorology and Climatology, 52(9), 2051–2064. https://doi.org/10.1175/JAMC-D-13-02.1
- Li, F., Yigitcanlar, T., Nepal, M., Thanh, K. N., & Dur, F. (2022). Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review. Energies, 15(19), Article 19. https://doi.org/10.3390/en15196998
- Liu, X., Yue, W., Yang, X., Hu, K., Zhang, W., & Huang, M. (2020). Mapping Urban Heat Vulnerability of Extreme Heat in Hangzhou via Comparing Two Approaches. Complexity, e9717658. https://doi.org/10.1155/2020/9717658
- Mackey, C. W., Lee, X., & Smith, R. B. (2012). Remotely sensing the cooling effects of city scale efforts to reduce urban heat island. Building and Environment, 49, 348‑358. https://doi.org/10.1016/j.buildenv.2011.08.004
- Meehl, G. A., & Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science (New York, N.Y.), 305(5686), 994–997. https://doi.org/10.1126/science.1098704
- Molina, G., Hureau, L., & Lamberts, C. (2023). Les citadins face aux fortes chaleurs: Vulnérabilités, vécus habitants, santé et adaptations. Rapport du programme de recherche CNRS - IRSTV - Nantes Métropole “ Habitants des villes et climat .” https://hal.science/hal-04172893
- Naughton, M. P., Henderson, A., Mirabelli, M. C., Kaiser, R., Wilhelm, J. L., Kieszak, S. M., Rubin, C. H., & McGeehin, M. A. (2002). Heat-related mortality during a 1999 heat wave in Chicago. American Journal of Preventive Medicine, 22(4), 221–227. https://doi.org/10.1016/s0749-3797(02)00421-x
- Nayak, S. G., Shrestha, S., Kinney, P. L., Ross, Z., Sheridan, S. C., Pantea, C. I., Hsu, W. H., Muscatiello, N., & Hwang, S. A. (2018). Development of a heat vulnerability index for New York State. Public Health, 161, 127–137. https://doi.org/10.1016/j.puhe.2017.09.006
- OECD, European Union, & Joint Research Centre - European Commission. (2008). Handbook on Constructing Composite Indicators: Methodolo-gy and User Guide. OECD. https://doi.org/10.1787/9789264043466-en
- Oke, T. R. (1973). City size and the urban heat island. Atmospheric Environment (1967), 7(8), 769–779. https://doi.org/10.1016/0004-6981(73)90140-6
- Oke, T. R. (1978). Boundary Layer Climates. Routledge.
- Peres-Neto, P., Jackson, D., & Somers, K. (2005). How Many Principal Components? Stopping Rules for Determining the Number of Non-Trivial Axes Revisited. Computational Statistics & Data Analysis, 49, 974–997. https://doi.org/10.1016/j.csda.2004.06.015
- Panagiotopoulos, G., & Kaliampakos, D. (2024). Accessibility, Rural Depopulation & the Modified Areal Unit Problem: An Analysis of Mainland Greece. European Journal of Geography, 15(1), Article 1. https://doi.org/10.48088/ejg.g.pan.15.1.042.053
- Pigeon, P. (2002). Réflexions sur les notions et les méthodes en géographie des risques dits naturels. Annales de géographie, 111(627), 452–470. https://doi.org/10.3406/geo.2002.21624
- Quenault, B. (2015). La vulnérabilité, un concept central de l’analyse des risques urbains en lien avec le changement climatique. Les Annales de la Recherche Urbaine, 110(1), 138–151. https://doi.org/10.3406/aru.2015.3175
- Qureshi, A. M., & Rachid, A. (2022). Heat Vulnerability Index Mapping: A Case Study of a Medium-Sized City (Amiens). Climate, 10(8), Article 8. https://doi.org/10.3390/cli10080113
- Rakotomalala, R. (2012). Stratégies de détermination du nombre d’axes en ACP (Analyse en Composantes Principales). https://eric.univ-lyon2.fr/ricco/tanagra/fichiers/fr_Tanagra_Nb_Components_PCA.pdf
- Rand, W. M. (1971). Objective Criteria for the Evaluation of Clustering Methods. Journal of the American Statistical Association, 66(336), 846–850. https://doi.org/10.1080/01621459.1971.10482356
- Reghezza-Zitt, M. (2023). Sociétés humaines et territoires dans un climat qui change. Du réchauffement climatique global aux politiques clima-tiques (ISSN : 2492-7775) [Document]. Géoconfluences; École normale supérieure de Lyon. https://geoconfluences.ens-lyon.fr/informations-scientifiques/dossiers-thematiques/changement-global/articles-scientifiques/rechauffement-climatique-politiques-climatiques
- Robine, J.-M., Cheung, S. L. K., Le Roy, S., Van Oyen, H., Griffiths, C., Michel, J.-P., & Herrmann, F. R. (2008). Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biologies, 331(2), 171–178. https://doi.org/10.1016/j.crvi.2007.12.001
- Sanders, L. (1989). L’analyse des données appliquée à la géographie. Groupement d’intérêt public RECLUS.
- Saracco, J., Chavent, M., Audin-Garcia, L., Lespinet-Najib, V., & Ron-Angevin, R. (2018). Classification de variables et analyse multivariée de don-nées mixtes issues d’une étude BCI. Ingénierie Cognitique, 2(1). https://doi.org/10.21494/ISTE.OP.2018.0311
- Semenza, J. C., Rubin, C. H., Falter, K. H., Selanikio, J. D., Flanders, W. D., Ho.we, H. L., & Wilhelm, J. L. (1996). Heat-Related Deaths during the July 1995 Heat Wave in Chicago. New England Journal of Medicine, 335(2), 84–90. https://doi.org/10.1056/NEJM199607113350203
- Soomar, S. M., & Soomar, S. M. (2023). Identifying factors to develop and validate a heat vulnerability tool for Pakistan – A review. Clinical Epi-demiology and Global Health, 19, 101214. https://doi.org/10.1016/j.cegh.2023.101214
- Suher-Carthy, M., Lagelouze, T., Hidalgo, J., Schoetter, R., Touati, N., Jougla, R., & Masson, V. (2023). Urban heat island intensity maps and local weather types description for a 45 French urban agglomerations dataset obtained from atmopsheric numerical simulations. Data in Brief, 50, 109437. https://doi.org/10.1016/j.dib.2023.109437
- Suher-Carthy, M. (2021). Translation of Urban Climate Analysis Output Using Chorematic Representation: Case of French Cities. Theseus, 80. https://urn.fi/URN:NBN:fi:amk-2021110119105
- Sun, Y., Li, Y., Ma, R., Gao, C., & Wu, Y. (2022). Mapping urban socio-economic vulnerability related to heat risk : A grid-based assessment frame-work by combing the geospatial big data. Urban Climate, 43, 101169. https://doi.org/10.1016/j.uclim.2022.101169
- Técher, M., Ait Haddou, H., & Aguejdad, R. (2023). Urban Heat Island’s Vulnerability Assessment by Integrating Urban Planning Policies: A Case Study of Montpellier Méditerranée Metropolitan Area, France. Sustainability, 15(3), Article 3. https://doi.org/10.3390/su15031820
- Theys, J., & Fabiani, J.-L. (1987). La Société vulnérable: Évaluer et maîtriser les risques. Presses de l’École normale supérieure.
- Thomas, K., Hardy, R. D., Lazrus, H., Mendez, M., Orlove, B., Rivera‐Collazo, I., Roberts, J. T., Rockman, M., Warner, B. P., & Winthrop, R. (2019). Explaining differential vulnerability to climate change: A social science review. Wiley Interdisciplinary Reviews. Climate Change, 10(2), e565. https://doi.org/10.1002/wcc.565
- Tuccillo, J. V., & Spielman, S. E. (2022). A Method for Measuring Coupled Individual and Social Vulnerability to Environmental Hazards. Annals of the American Association of Geographers, 112(6), 1702–1725. https://doi.org/10.1080/24694452.2021.1989283
- Wolf, T., Chuang, W.-C., & McGregor, G. (2015). On the Science-Policy Bridge: Do Spatial Heat Vulnerability Assessment Studies Influence Policy? International Journal of Environmental Research and Public Health, 12(10), Article 10. https://doi.org/10.3390/ijerph121013321
- Wolf, T., McGregor, G., & Analitis, A. (2013). Performance Assessment of a Heat Wave Vulnerability Index for Greater London, United Kingdom. Weather, Climate, and Society, 6(1), 32–46. https://doi.org/10.1175/WCAS-D-13-00014.1
- World Meteorological Organization. (2021). WMO Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019) (p. 90). https://library.wmo.int/viewer/57564/download?file=1267_Atlas_of_Mortality_en.pdf&type=pdf&navigator=1
- Xu, Z., Sheffield, P. E., Su, H., Wang, X., Bi, Y., & Tong, S. (2014). The impact of heat waves on children’s health: A systematic review. International Journal of Biometeorology, 58(2), 239–247. https://doi.org/10.1007/s00484-013-0655-x
- Yeo, I., & Johnson, R. A. (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87(4), 954–959. https://doi.org/10.1093/biomet/87.4.954
- Yin, S., Ren, C., Zhang, X., Hidalgo, J., Schoetter, R., Kwok, Y. T., & Lau, K. K.-L. (2022). Potential of Synthetizing Climatopes and Local Climate Zones for Urban Climatic Planning Recommendations: A Case Study in Toulouse, France. Cybergeo: Revue Européenne de Géographie / Euro-pean Journal of Geography. https://doi.org/10.4000/cybergeo.39417
- Zhang, W., McManus, P., & Duncan, E. (2018). A Raster-Based Subdividing Indicator to Map Urban Heat Vulnerability: A Case Study in Sydney, Australia. International Journal of Environmental Research and Public Health, 15(11), 2516. https://doi.org/10.3390/ijerph15112516
- Zhu, Q., Liu, T., Lin, H., Xiao, J., Luo, Y., Zeng, W., Zeng, S., Wei, Y., Chu, C., Baum, S., Du, Y., & Ma, W. (2014). The spatial distribution of health vulnerability to heat waves in Guangdong Province, China. Global Health Action, 7. https://doi.org/10.3402/gha.v7.25051