Vol. 15 No. 3 (2024):
Research Article

Comparison and theoretical conceptualization analysis of statistical methods used to develop heat vulnerability indices in urban areas

Thomas Lagelouze
Laboratoire Interdisciplinaire Solidarités Sociétés Territoires (LISST), Université de Toulouse, CNRS, UT2J, 5 Allée Antonio Machado, 31058, Toulouse, France
Julia Hidalgo
Laboratoire Interdisciplinaire Solidarités Sociétés Territoires (LISST), Université de Toulouse, CNRS, UT2J, 5 Allée Antonio Machado, 31058, Toulouse, France
Mitia Aranda
Laboratoire Interdisciplinaire Solidarités Sociétés Territoires (LISST), Université de Toulouse, CNRS, UT2J, 5 Allée Antonio Machado, 31058, Toulouse, France
Guillaume Dumas
Toulouse Métropole, Service Observatoire Environnemental, Climat et Transition Écologique, Direction Générale aux Transitions, 6 rue René-Leduc, 31505, Toulouse, France
Theoretical conceptualization of the urban heat vulnerability system. Adapted from Pigeon (2002) and Lagelouze (2022).

Published 2024-08-16

Keywords

  • Heat vulnerability,
  • Statistical index,
  • Spatial analysis,
  • Results comparison,
  • Urban Heat Island,
  • Toulouse Métropole
  • ...More
    Less

How to Cite

Lagelouze, Thomas, Julia Hidalgo, Mitia Aranda, and Guillaume Dumas. 2024. “Comparison and Theoretical Conceptualization Analysis of Statistical Methods Used to Develop Heat Vulnerability Indices in Urban Areas”. European Journal of Geography 15 (3):154-76. https://doi.org/10.48088/ejg.t.lag.15.3.154.176.
Received 2024-04-09
Accepted 2024-07-01
Published 2024-08-16

Abstract

In view of the impact of extreme temperatures on physical and psychological health, particularly in urban areas, several studies have focused on assessing social vulnerability using quantitative indexing approaches with the aim of creating a heat vulnerability index (HVI). In this context, this study employs three statistical methodologies frequently used to construct HVIs on the territory of the Toulouse Métropole, France, at the census block (IRIS) scale to assess the efficiency of this type of approach for evaluating social vulnerability in urban environments considering the current theoretical conceptualization. The three HVIs show the same general trends, with a spatial configuration in which high levels of vulnerability are concentrated in the downtown and suburbs of the Toulouse municipality. Vulnerability gradually decreases away from the urban core, becoming moderate in the inner suburbs and low on the outskirts. However, a spatial analysis of the clusters reveals variability in the boundaries of the vulnerability hotspots. Value class matching indicates that a significant number of census blocks are classified differently according to the method considered. These results raise questions concerning the ability of HVIs to provide reliable vulnerability assessments, given their geostatistical and conceptual limitations. Indexing approaches therefore appear to contradict current theoretical conceptualizations promoting the concept of vulnerability as being complex and multifactorial.

Highlights:

  • Heat vulnerability indices (HVIs) using three common methodologies are developed.
  • Numerous census blocks are categorized differently based on the specific HVI used.
  • Alternative approaches for future vulnerability assessments need to be explored.

Downloads

Download data is not yet available.

References

  1. Alonso, L., & Renard, F. (2020). A Comparative Study of the Physiological and Socio-Economic Vulnerabilities to Heat Waves of the Population of the Metropolis of Lyon (France) in a Climate Change Context. International Journal of Environmental Research and Public Health, 17(3), Article 3. https://doi.org/10.3390/ijerph17031004
  2. Anastassakos, I., & d’Aubigny, G. (1984). L’utilisation des tests de sphéricité pour la recherche de la dimension de l’espace latent en analyse factorielle classique et en analyse en composantes principales. Revue de Statistique Appliquée, 32(2), 45–57. http://www.numdam.org/item/RSA_1984__32_2_45_0/
  3. Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2), 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
  4. Ballester, J., Quijal-Zamorano, M., Méndez Turrubiates, R. F., Pegenaute, F., Herrmann, F. R., Robine, J. M., Basagaña, X., Tonne, C., Antó, J. M., & Achebak, H. (2023). Heat-related mortality in Europe during the summer of 2022. Nature Medicine, 29(7), Article 7. https://doi.org/10.1038/s41591-023-02419-z
  5. Bao, J., Li, X., & Yu, C. (2015). The Construction and Validation of the Heat Vulnerability Index, a Review. International Journal of Environmental Research and Public Health, 12(7), 7220–7234. https://doi.org/10.3390/ijerph120707220-
  6. Becerra, S. (2012). Vulnérabilité, risques et environnement: L’itinéraire chaotique d’un paradigme sociologique contemporain. VertigO - la revue électronique en sciences de l’environnement, Volume 12 Numéro 1, Article Volume 12 Numéro 1. https://doi.org/10.4000/vertigo.11988
  7. Benmarhnia, T., Deguen, S., Kaufman, J. S., & Smargiassi, A. (2015). Review Article: Vulnerability to Heat-related Mortality: A Systematic Review, Meta-analysis, and Meta-regression Analysis. Epidemiology (Cambridge, Mass.), 26(6), 781–793. https://doi.org/10.1097/EDE.0000000000000375
  8. Benmarhnia, T., Kihal-Talantikite, W., Ragettli, M., & Deguen, S. (2017). Small-area spatiotemporal analysis of heatwave impacts on elderly mor-tality in Paris: A cluster analysis approach. Science of the Total Environment, 592, 288. https://doi.org/10.1016/j.scitotenv.2017.03.102
  9. Berger, J.-L. (2022). Analyse factorielle exploratoire et analyse en composantes principales: Guide pratique. https://doi.org/10.13140/RG.2.2.16206.18246
  10. Blaikie, P., Cannon, T., Davis, I., & Wisner, B. (Eds.). (1994). At risk: Natural hazards, people’s vulnerability, and disasters (1. publ). Routledge.
  11. Chavent, M., Kuentz-Simonet, V., Labenne, A., & Saracco, J. (2022). Multivariate Analysis of Mixed Data : The R Package PCAmixdata. https://doi.org/10.48550/arXiv.1411.4911
  12. Chavent, M., Kuentz-Simonet, V., Liquet, B., & Saracco, J. (2012). ClustOfVar: An R Package for the Clustering of Variables. Journal of Statistical Software, 50, 1–16. https://doi.org/10.18637/jss.v050.i13
  13. Choffel, P., & Heroguer, P. (2009). Population, démographie [SIG Ville]. Système d’Information Géographique de la politique de la Ville. https://sig.ville.gouv.fr/page/48
  14. Climate Copernicus. (2023). 2022 saw record temperatures in Europe and across the world. Climate Copernicus. https://climate.copernicus.eu/2022-saw-record-temperatures-europe-and-across-world
  15. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555
  16. Cutter, S. (1996). Societal Vulnerability to Environmental Hazards. Progress in Human Geography, 20, 529–539. https://doi.org/10.1177/030913259602000407
  17. Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social Vulnerability to Environmental Hazards. Social Science Quarterly, 84(2), 242–261. https://doi.org/10.1111/1540-6237.8402002
  18. d’Ercole, R. (1998). Approches de la vulnérabilité et perspectives pour une meilleure logique de réduction des risques. Pangea infos, 29/30, 20.
  19. de Sherbinin, A., Bukvic, A., Rohat, G., Gall, M., McCusker, B., Preston, B., Apotsos, A., Fish, C., Kienberger, S., Muhonda, P., Wilhelmi, O., Macha-ria, D., Shubert, W., Sliuzas, R., Tomaszewski, B., & Zhang, S. (2019). Climate vulnerability mapping: A systematic review and future prospects. WIREs Climate Change, 10(5), e600. https://doi.org/10.1002/wcc.600
  20. Dousset, B., Gourmelon, F., Giraudet, E., Laaidi, K., Zeghnoun, A., Bretin, P., & Vandentorren, S. (2011). Evolution climatique et canicule en mi-lieu urbain: Apport de la télédétection à l’anticipation et à la gestion de l’impact sanitaire (p. 77). https://hal.archives-ouvertes.fr/hal-00620833
  21. Dubreuil, V. (2022). Le changement climatique en France illustré par la classification de Köppen. La Météorologie, 116, Article 116. https://doi.org/10.37053/lameteorologie-2022-0012
  22. Ebi, K. L., Capon, A., Berry, P., Broderick, C., Dear, R. de, Havenith, G., Honda, Y., Kovats, R. S., Ma, W., Malik, A., Morris, N. B., Nybo, L., Senevi-ratne, S. I., Vanos, J., & Jay, O. (2021). Hot weather and heat extremes: Health risks. The Lancet, 398(10301), 698–708. https://doi.org/10.1016/S0140-6736(21)01208-3
  23. Ebi, K. L., Vanos, J., Baldwin, J. W., Bell, J. E., Hondula, D. M., Errett, N. A., Hayes, K., Reid, C. E., Saha, S., Spector, J., & Berry, P. (2021). Extreme Weather and Climate Change: Population Health and Health System Implications. Annual Review of Public Health, 42(1), 293–315. https://doi.org/10.1146/annurev-publhealth-012420-105026
  24. Estevez B., Hidalgo J. and Bonhomme M. (2024). Anticipatory action and future living in a context of increasing temperatures: an analysis from the Barcelona Climate Shelter Network. Book chapter for Cities as Anticipatory Systems, Springer. Manuscript submitted for publication.
  25. Forceville, G., Lemonsu, A., Goria, S., Stempfelet, M., Host, S., Alessandrini, J.-M., Cordeau, E., & Pascal, M. (2024). Spatial contrasts and temporal changes in fine-scale heat exposure and vulnerability in the Paris region. Science of The Total Environment, 906, 167476. https://doi.org/10.1016/j.scitotenv.2023.167476
  26. Guo, X., Huang, G., Jia, P., & Wu, J. (2019). Estimating Fine-Scale Heat Vulnerability in Beijing Through Two Approaches: Spatial Patterns, Similari-ties, and Divergence. Remote Sensing, 11(20), Article 20. https://doi.org/10.3390/rs11202358
  27. Huang, G., Zhou, W., & Cadenasso, M. L. (2011). Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neigh-borhood socioeconomic characteristics in Baltimore, MD. Journal of Environmental Management, 92(7), 1753–1759. https://doi.org/10.1016/j.jenvman.2011.02.006
  28. Inostroza, L., Palme, M., & de la Barrera, F. (2016). A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile. PloS One, 11(9), e0162464. https://doi.org/10.1371/journal.pone.0162464
  29. Insee. (2024). Découpage infracommunal | Insee [Institutionnel]. Institut national de la statistique et des études économiques (INSEE). https://www.insee.fr/fr/information/2017499
  30. Insee. (2024). Dossier complet − Intercommunalité-Métropole de Toulouse Métropole (243100518) | Insee [Institutionnel]. Institut national de la statistique et des études économiques (INSEE). https://www.insee.fr/fr/statistiques/2011101?geo=EPCI-243100518#chiffre-cle-1
  31. Inserm. (2004). Surmortalité liée à la canicule d’août 2003 (p. 76). https://www.inserm.fr/wp-content/uploads/2017-11/inserm-rapportthematique-surmortalitecaniculeaout2003-rapportfinal.pdf
  32. IPCC. (2021). Climate Change 2021 - The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergov-ernmental Panel on Climate Change (1re éd.). Cambridge University Press. https://doi:10.1017/9781009157896
  33. IPCC. (2023). Climate Change 2022 - Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1re éd.). Cambridge University Press. https://doi:10.1017/9781009325844
  34. Jung, M. C., Yost, M. G., Dannenberg, A. L., Dyson, K., & Alberti, M. (2024). Legacies of redlining lead to unequal cooling effects of urban tree canopy. Landscape and Urban Planning, 246(105028). https://doi.org/10.1016/j.landurbplan.2024.105028
  35. Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187–200. https://doi.org/10.1007/BF02289233
  36. Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36. https://doi.org/10.1007/BF02291575
  37. Karanja, J., & Kiage, L. (2021). Perspectives on spatial representation of urban heat vulnerability. Science of The Total Environment, 774, 145634. https://doi.org/10.1016/j.scitotenv.2021.145634
  38. Karanja, J., & Kiage, L. (2022). Scale implications and evolution of a social vulnerability index in Atlanta, Georgia, USA. Natural Hazards, 113(1), 789–812. https://doi.org/10.1007/s11069-022-05324-9
  39. Kastendeuch, P., Massing, N., Schott, E., Philipps, N., & Lecomte, K. (2023). Vulnérabilité et îlot de chaleur urbain: Les facteurs du risque ther-mique nocturne à Strasbourg. Climatologie, 20, 9. https://doi.org/10.1051/climat/202320009
  40. Laaidi, K., Zeghnoun, A., Dousset, B., Bretin, P., Vandentorren, S., Giraudet, E., & Beaudeau, P. (2012). The Impact of Heat Islands on Mortality in Paris during the August 2003 Heat Wave. Environmental Health Perspectives, 120(2), 254–259. https://doi.org/10.1289/ehp.1103532
  41. Lagelouze, T. (2022). Comparaison de méthodes d'évaluation statistiques de la vulnérabilité sociale à la hausse de la chaleur en milieu urbain : application aux métropoles de Toulouse, Grenoble, Lyon et Paris. Master 2 Mention « GAED » Parcours: GEOgraphie Information Interface Durabilité EnvironnementS. Université Grenoble Alpes, 69 p. https://dumas.ccsd.cnrs.fr/dumas-03774994 ;
  42. Lemarque, M. (2023, août 26). Toulouse. 2003 ou 2023 : Quelle canicule a été la plus sévère selon Météo France ? actu.fr. https://actu.fr/occitanie/toulouse_31555/toulouse-2003-ou-2023-quelle-canicule-a-ete-la-plus-severe-selon-meteo-france_60000605.html
  43. Lemonsu, A., Viguié, V., Daniel, M., & Masson, V. (2015). Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Climate, 14, 586–605. https://doi.org/10.1016/j.uclim.2015.10.007
  44. Li, D., & Bou-Zeid, E. (2013). Synergistic Interactions between Urban Heat Islands and Heat Waves: The Impact in Cities Is Larger than the Sum of Its Parts. Journal of Applied Meteorology and Climatology, 52(9), 2051–2064. https://doi.org/10.1175/JAMC-D-13-02.1
  45. Li, F., Yigitcanlar, T., Nepal, M., Thanh, K. N., & Dur, F. (2022). Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review. Energies, 15(19), Article 19. https://doi.org/10.3390/en15196998
  46. Liu, X., Yue, W., Yang, X., Hu, K., Zhang, W., & Huang, M. (2020). Mapping Urban Heat Vulnerability of Extreme Heat in Hangzhou via Comparing Two Approaches. Complexity, e9717658. https://doi.org/10.1155/2020/9717658
  47. Mackey, C. W., Lee, X., & Smith, R. B. (2012). Remotely sensing the cooling effects of city scale efforts to reduce urban heat island. Building and Environment, 49, 348‑358. https://doi.org/10.1016/j.buildenv.2011.08.004
  48. Meehl, G. A., & Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science (New York, N.Y.), 305(5686), 994–997. https://doi.org/10.1126/science.1098704
  49. Molina, G., Hureau, L., & Lamberts, C. (2023). Les citadins face aux fortes chaleurs: Vulnérabilités, vécus habitants, santé et adaptations. Rapport du programme de recherche CNRS - IRSTV - Nantes Métropole “ Habitants des villes et climat .” https://hal.science/hal-04172893
  50. Naughton, M. P., Henderson, A., Mirabelli, M. C., Kaiser, R., Wilhelm, J. L., Kieszak, S. M., Rubin, C. H., & McGeehin, M. A. (2002). Heat-related mortality during a 1999 heat wave in Chicago. American Journal of Preventive Medicine, 22(4), 221–227. https://doi.org/10.1016/s0749-3797(02)00421-x
  51. Nayak, S. G., Shrestha, S., Kinney, P. L., Ross, Z., Sheridan, S. C., Pantea, C. I., Hsu, W. H., Muscatiello, N., & Hwang, S. A. (2018). Development of a heat vulnerability index for New York State. Public Health, 161, 127–137. https://doi.org/10.1016/j.puhe.2017.09.006
  52. OECD, European Union, & Joint Research Centre - European Commission. (2008). Handbook on Constructing Composite Indicators: Methodolo-gy and User Guide. OECD. https://doi.org/10.1787/9789264043466-en
  53. Oke, T. R. (1973). City size and the urban heat island. Atmospheric Environment (1967), 7(8), 769–779. https://doi.org/10.1016/0004-6981(73)90140-6
  54. Oke, T. R. (1978). Boundary Layer Climates. Routledge.
  55. Peres-Neto, P., Jackson, D., & Somers, K. (2005). How Many Principal Components? Stopping Rules for Determining the Number of Non-Trivial Axes Revisited. Computational Statistics & Data Analysis, 49, 974–997. https://doi.org/10.1016/j.csda.2004.06.015
  56. Panagiotopoulos, G., & Kaliampakos, D. (2024). Accessibility, Rural Depopulation & the Modified Areal Unit Problem: An Analysis of Mainland Greece. European Journal of Geography, 15(1), Article 1. https://doi.org/10.48088/ejg.g.pan.15.1.042.053
  57. Pigeon, P. (2002). Réflexions sur les notions et les méthodes en géographie des risques dits naturels. Annales de géographie, 111(627), 452–470. https://doi.org/10.3406/geo.2002.21624
  58. Quenault, B. (2015). La vulnérabilité, un concept central de l’analyse des risques urbains en lien avec le changement climatique. Les Annales de la Recherche Urbaine, 110(1), 138–151. https://doi.org/10.3406/aru.2015.3175
  59. Qureshi, A. M., & Rachid, A. (2022). Heat Vulnerability Index Mapping: A Case Study of a Medium-Sized City (Amiens). Climate, 10(8), Article 8. https://doi.org/10.3390/cli10080113
  60. Rakotomalala, R. (2012). Stratégies de détermination du nombre d’axes en ACP (Analyse en Composantes Principales). https://eric.univ-lyon2.fr/ricco/tanagra/fichiers/fr_Tanagra_Nb_Components_PCA.pdf
  61. Rand, W. M. (1971). Objective Criteria for the Evaluation of Clustering Methods. Journal of the American Statistical Association, 66(336), 846–850. https://doi.org/10.1080/01621459.1971.10482356
  62. Reghezza-Zitt, M. (2023). Sociétés humaines et territoires dans un climat qui change. Du réchauffement climatique global aux politiques clima-tiques (ISSN : 2492-7775) [Document]. Géoconfluences; École normale supérieure de Lyon. https://geoconfluences.ens-lyon.fr/informations-scientifiques/dossiers-thematiques/changement-global/articles-scientifiques/rechauffement-climatique-politiques-climatiques
  63. Robine, J.-M., Cheung, S. L. K., Le Roy, S., Van Oyen, H., Griffiths, C., Michel, J.-P., & Herrmann, F. R. (2008). Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biologies, 331(2), 171–178. https://doi.org/10.1016/j.crvi.2007.12.001
  64. Sanders, L. (1989). L’analyse des données appliquée à la géographie. Groupement d’intérêt public RECLUS.
  65. Saracco, J., Chavent, M., Audin-Garcia, L., Lespinet-Najib, V., & Ron-Angevin, R. (2018). Classification de variables et analyse multivariée de don-nées mixtes issues d’une étude BCI. Ingénierie Cognitique, 2(1). https://doi.org/10.21494/ISTE.OP.2018.0311
  66. Semenza, J. C., Rubin, C. H., Falter, K. H., Selanikio, J. D., Flanders, W. D., Ho.we, H. L., & Wilhelm, J. L. (1996). Heat-Related Deaths during the July 1995 Heat Wave in Chicago. New England Journal of Medicine, 335(2), 84–90. https://doi.org/10.1056/NEJM199607113350203
  67. Soomar, S. M., & Soomar, S. M. (2023). Identifying factors to develop and validate a heat vulnerability tool for Pakistan – A review. Clinical Epi-demiology and Global Health, 19, 101214. https://doi.org/10.1016/j.cegh.2023.101214
  68. Suher-Carthy, M., Lagelouze, T., Hidalgo, J., Schoetter, R., Touati, N., Jougla, R., & Masson, V. (2023). Urban heat island intensity maps and local weather types description for a 45 French urban agglomerations dataset obtained from atmopsheric numerical simulations. Data in Brief, 50, 109437. https://doi.org/10.1016/j.dib.2023.109437
  69. Suher-Carthy, M. (2021). Translation of Urban Climate Analysis Output Using Chorematic Representation: Case of French Cities. Theseus, 80. https://urn.fi/URN:NBN:fi:amk-2021110119105
  70. Sun, Y., Li, Y., Ma, R., Gao, C., & Wu, Y. (2022). Mapping urban socio-economic vulnerability related to heat risk : A grid-based assessment frame-work by combing the geospatial big data. Urban Climate, 43, 101169. https://doi.org/10.1016/j.uclim.2022.101169
  71. Técher, M., Ait Haddou, H., & Aguejdad, R. (2023). Urban Heat Island’s Vulnerability Assessment by Integrating Urban Planning Policies: A Case Study of Montpellier Méditerranée Metropolitan Area, France. Sustainability, 15(3), Article 3. https://doi.org/10.3390/su15031820
  72. Theys, J., & Fabiani, J.-L. (1987). La Société vulnérable: Évaluer et maîtriser les risques. Presses de l’École normale supérieure.
  73. Thomas, K., Hardy, R. D., Lazrus, H., Mendez, M., Orlove, B., Rivera‐Collazo, I., Roberts, J. T., Rockman, M., Warner, B. P., & Winthrop, R. (2019). Explaining differential vulnerability to climate change: A social science review. Wiley Interdisciplinary Reviews. Climate Change, 10(2), e565. https://doi.org/10.1002/wcc.565
  74. Tuccillo, J. V., & Spielman, S. E. (2022). A Method for Measuring Coupled Individual and Social Vulnerability to Environmental Hazards. Annals of the American Association of Geographers, 112(6), 1702–1725. https://doi.org/10.1080/24694452.2021.1989283
  75. Wolf, T., Chuang, W.-C., & McGregor, G. (2015). On the Science-Policy Bridge: Do Spatial Heat Vulnerability Assessment Studies Influence Policy? International Journal of Environmental Research and Public Health, 12(10), Article 10. https://doi.org/10.3390/ijerph121013321
  76. Wolf, T., McGregor, G., & Analitis, A. (2013). Performance Assessment of a Heat Wave Vulnerability Index for Greater London, United Kingdom. Weather, Climate, and Society, 6(1), 32–46. https://doi.org/10.1175/WCAS-D-13-00014.1
  77. World Meteorological Organization. (2021). WMO Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019) (p. 90). https://library.wmo.int/viewer/57564/download?file=1267_Atlas_of_Mortality_en.pdf&type=pdf&navigator=1
  78. Xu, Z., Sheffield, P. E., Su, H., Wang, X., Bi, Y., & Tong, S. (2014). The impact of heat waves on children’s health: A systematic review. International Journal of Biometeorology, 58(2), 239–247. https://doi.org/10.1007/s00484-013-0655-x
  79. Yeo, I., & Johnson, R. A. (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87(4), 954–959. https://doi.org/10.1093/biomet/87.4.954
  80. Yin, S., Ren, C., Zhang, X., Hidalgo, J., Schoetter, R., Kwok, Y. T., & Lau, K. K.-L. (2022). Potential of Synthetizing Climatopes and Local Climate Zones for Urban Climatic Planning Recommendations: A Case Study in Toulouse, France. Cybergeo: Revue Européenne de Géographie / Euro-pean Journal of Geography. https://doi.org/10.4000/cybergeo.39417
  81. Zhang, W., McManus, P., & Duncan, E. (2018). A Raster-Based Subdividing Indicator to Map Urban Heat Vulnerability: A Case Study in Sydney, Australia. International Journal of Environmental Research and Public Health, 15(11), 2516. https://doi.org/10.3390/ijerph15112516
  82. Zhu, Q., Liu, T., Lin, H., Xiao, J., Luo, Y., Zeng, W., Zeng, S., Wei, Y., Chu, C., Baum, S., Du, Y., & Ma, W. (2014). The spatial distribution of health vulnerability to heat waves in Guangdong Province, China. Global Health Action, 7. https://doi.org/10.3402/gha.v7.25051