Advancing Tsunami Vulnerability Modelling: A Systematic Review and Bibliometric Analysis of Remote Sensing and GIS Applications

Published 2025-03-24
Keywords
- Systematic Literature Review,
- biblometric,
- tsunami,
- vulnerability,
- geographic information system
- remote sensing ...More
How to Cite
Copyright (c) 2025 Nurhasanah Tika, Nagara Rakyan Paksi, Dimyati Muhammad

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-03-23
Published 2025-03-24
Abstract
This study conducts a systematic review and bibliometric analysis of tsunami vulnerability modelling using remote sensing and Geographic Information Systems (GIS) to assess research trends, methodologies, and challenges in disaster risk assessment. Sixty-six articles published between 2014 and 2024 were analyzed from the Scopus database, revealing an increasing reliance on geospatial technologies for tsunami hazard mapping, vulnerability assessment, and risk mitigation. The findings highlight the dominance of GIS-based spatial analysis and numerical modelling techniques, with remote sensing providing critical data for hazard simulations. The study also identifies a growing trend in integrating machine learning with GIS to enhance tsunami risk prediction and improve early warning systems. Despite technological advancements, challenges persist, particularly in ensuring data accessibility, standardizing vulnerability assessment frameworks, and addressing socio-economic disparities in disaster resilience. The review emphasizes the need for interdisciplinary collaboration to develop adaptive and inclusive approaches, particularly in regions with limited technical capacity. Furthermore, multi-hazard vulnerability frameworks are gaining prominence, incorporating tsunami risks alongside coastal hazards such as storm surges and sea-level rise. This study underscores the critical role of remote sensing and GIS in advancing tsunami vulnerability modelling while highlighting existing research gaps. Future research should improve model accuracy, integrate real-time environmental data, and develop innovative solutions to enhance community preparedness and coastal resilience. By synthesizing recent studies and analyzing emerging trends, this paper provides valuable insights for researchers, policymakers, and disaster management practitioners working to mitigate tsunami risks in vulnerable coastal areas.
Highlights:
- Tsunamis cause significant damage to coastal regions, impacting lives and economies.
- Remote sensing and GIS are essential tools for assessing tsunami vulnerability.
- Geospatial technologies improve disaster preparedness and coastal resilience strategies.
Downloads
References
- Aguirre-Ayerbe, I., Sánchez, J. M., Aniel-Quiroga, I., González-Riancho, P., Merino, M., Al-Yahyai, S. González, M., & Medina, R. (2018). From tsunami risk assessment to disaster risk reduction – the case of Oman. Natural Hazards and Earth System Sciences, 18(8), 2241–2260. https://doi.org/10.5194/nhess-18-2241-2018.
- Akbar, Z. (2019). Community Resilience: Lesson Learnt from Disaster Survivors in Yogyakarta Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 273(1). https://doi.org/10.1088/1755-1315/273/1/012036.
- Anderson, T. R., Fletcher, C. H., Barbee, M. M., Romine, B. M., Lemmo, S., & Delevaux, J. M. S. M. S. (2018). Modeling multiple sea level rise stresses reveals up to twice the land at risk compared to strictly passive flooding methods. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-32658-x.
- Angove, M., Arcas, D., Bailey R., Carrasco, P., Coetzee, D., Fry, B., Gledhill, K., Harada, S., Von Hillebrandt-Andrare, C., Kong, L., McCreery, C., McCurrach, S. J., Miao, Y., Sakya, A. E., & Schindelé, F. (2019). Ocean Observations Required to Minimize Uncertainty in Global Tsunami Fore-casts, Warnings, and Emergency Response. Frontiers Maritime Science, 6. https://doi.org/10.3389/fmars.2019.00350.
- Anfuso, G., Postacchini, M., Di Luccio, D., & Benassai, G. (2021). Coastal Sensitivity/Vulnerability Characterization and Adaptation Strategies: A Review. Journal of Marine Science and Engineering, 9(1). https://doi.org/10.3390/jmse9010072.
- Aravena Pelizari, P., Geiß, C., Aguirre, P., Santa María, H., Merino Peña, Y., & Taubenböck, H. (2021). Automated building characterization for seismic risk assessment using street-level imagery and deep learning. ISPRS Journal of Photogrammetry and Remote Sensing, 180, 370–386. https://doi.org/10.1016/j.isprsjprs.2021.07.004.
- Ayuningtyas, D., Windiarti, S., Hadi, M. S., Fasrini, U. U., & Barinda, S. (2021). Disaster Preparedness and Mitigation in Indonesia: A Narrative Review. Iranian Journal of Public Health, 50(8), 1536–1546. https://doi.org/10.18502/ijph.v50i8.6799.
- Batsaris, M. (2025). Incorporating Population Dynamics in the Context of Earthquake Shelter Location-Allocation Analysis. European Journal of Geography, 16(2), 52-65. https://doi.org/10.48088/ejg.m.bat.16.2.052.065
- Behren, J., Løvholt, F., Jelayer, F., Lorito, S., Salgado-Gálvez, M. A., Sørensen, M., Abadie, S., Aguirre-Ayerbe, I., Aniel-Quiroga, I., Babeyko, A., Baiguera, M., Basili, R., Belliazzi, S., Grezio, A., Johnson, K., Murphy, S., Paris, R., Rafliana, I., De Risi, R., Rossetto, T., Selva, J., Taroni, M., del Zoppo, M., Armigliato, A., Bures, V., Cech, P., Cecioni, C., Christodoulides, P., Davies, G., Dias, F., Bayraktar, H. B., González, M., Gritsevich, M., Guillas, S., Harbitz, C. B., Kanoglu, U., Macías, J., Papadopoulos, G. A., Polet, J., Romano, F., Salamon, A., Scala, A., Stepinac, M., Tappin, D. R., Thio, H. K., Tonini, R., Triantafyllou, I., Ulrich, T., Varini, E., Volpe, M., & Vyhmeister, E. (2021). Probabilistic Tsunami Hazard and Risk Anal-ysis: A Review of Research Gaps. Frontiers Earth Science, 9. https://doi.org/10.3389/feart.2021.628772.
- Benazir, Triatmaja, R., Syamsidik, Nizam, & Warniyati. (2024). Vegetation-based approached for tsunami risk reduction: Insights and challenges. Progress in Disaster Science, 23. https://doi.org/10.1016/j.pdisas.2024.100352.
- Benazir, & Oktari, R. S. (2024). Assessing tsunami risk along the Aceh coast, Indonesia: a quantitative analysis of fault rupture potential and early warning system efficacy for predicting arrival time and flood extent. Natural Hazard, 120, 4875–4900. https://doi.org/10.1007/s11069-024-06401-x.
- Benchekroun, S., Omira, R., Baptista, M. A., El Mouraouah, A., Brahim, A. I., & Toto, E. A. (2015). Tsunami impact and vulnerability in the harbor area of Tangier, Morocco. Geomatics, Natural Hazards and Risk, 6(8), 718–740. https://doi.org/10.1080/19475705.2013.858373.
- Bechon, T., Billon, M., Namur, O., Bolle, O., Fugmann, P., Foucart, H., Devidal, J.-L., Delmelle, N., & Vander Auwera, J. (2022). Petrology of the magmatic system beneath Osorno volcano (Central Southern Volcanic Zone, Chile). Lithos, 426–427. https://doi.org/10.1016/j.lithos.2022.106777.
- Biswas, S., & Sil, A. (2023). Tsunami Vulnerability Assessment and Multi-Criteria Decision Making Analysis of Eastern Coast of India Using GIS-Based Tools. KSCE Journal of Civil Engineering, 27, 1270–1287. https://doi.org/10.1007/s12205-023-1493-y.
- Biswas, S., & Nautiyal, S. (2023). A review of socio-economic vulnerability: The emergence of its theoretical concepts, models, and methodolo-gies. Natural Hazards Research, 3(3), 563-571. https://doi.org/10.1016/j.nhres.2023.05.005.
- Botzen, W. J., Deschenes, O., & Sanders, M. (2019). The Economic Impacts of Natural Disasters: A Review of Models and Empirical Studies. Re-view of Environmental Economics and Policy, 13(2), 167–188. https://doi.org/10.1093/reep/rez004.
- Bukvic, A., Rohat, G., Apotsos, A., & de Sherbinin, A. (2020). A Systematic Review of Coastal Vulnerability Mapping. Sustainability, 12(7). https://doi.org/10.3390/su12072822.
- Cardenas, M. B., Bennett, P. C., Zamora, P. B., Befus, K. M., Rodolfo, R. S., Cabria, H. B., & Lapus, M. R. (2015). Devastation of aquifers from tsu-nami-like storm surge by Supertyphoon Haiyan. Geophysical Research Letters, 42(8), 2844–2851. https://doi.org/10.1002/2015GL063418.
- Camargo, J. M. R., Silva, M. B., Júnior, A. V. F., & Araújo, T. C. M. (2019). Marine Geohazards: A Bibliometric-Based Review. Geosciences, 9(2). https://doi.org/10.3390/geosciences9020100.
- Cankaya, Z. C., Suzen, M. L., Yalciner, A. C., Kolat, C., Zaytsev, A., & Aytore, B. (2016). A new GIS-based tsunami risk evaluation: MeTHuVA (METU tsunami human vulnerability assessment) at Yenikapl, Istanbul. Earth, Planets and Space, 68, 133. https://doi.org/10.1186/s40623-016-0507-0.
- Cavalli, R., M. (2024). Remote Data for Mapping and Monitoring Coastal Phenomena and Parameters: A Systematic Review. Remote Sensing, 16(3). https://doi.org/10.3390/rs16030446.
- Cels, J., Rossetto, T., Dias, P., Thamboo, J., Wijesundara, K., Baiguera, M., & Del Zoppo, M. (2023). Engineering surveys of Sri Lankan schools exposed to tsunami. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1075290.
- Cesario, E., Giampá, S., Baglione, E., Cordrie, L., Selva, J., & Talia, D. (2024). Machine Learning for Tsunami Waves Forecasting Using Regression Trees. Big Data Research, 36, 100452. https://doi.org/10.1016/j.bdr.2024.100452.
- Choi, S., Maharjan, R., Hong, T. T. N., & Hanaoka, S. (2024). Impact of information provision on tsunami evacuation behavior of residents and international tourists in Japan. Transport Policy, 155, 264–273. https://doi.org/10.1016/j.tranpol.2024.07.010.
- Cienfuegos, R., Álvarez, G., León, J., Urrutia., A., & Castro, S. (2024). Analysis of the effects of urban micro-scale vulnerabilities on tsunami evacu-ation using an agent-based model– a case study in the city of Iquique, Chile. Natural Hazards Earth System Sciences, 24, 1485–1500. https://doi.org/10.5194/nhess-24-1485-2024.
- Damanik, M. R. S., Nurman, A., Restu, R., & Berutu, N. (2018). Tsunami risk analysis with run-up variation scenario based on modeling of Geo-graphic Information System on Sibolga City North Sumatera. International Journal of Engineering and Technology(UAE), 7(2.13 Speci), 332–336. https://doi.org/10.14419/ijet.v7i2.29.13648.
- Daly, P., Sieh, K., Seng, T. Y., McKinnon, E. E., Parnell, A. C., Ardiansyah, Feener, R. M., Ismail, N., Nizamuddin, & Majewski, J. (2019). Archaeologi-cal evidence that a late 14th-century tsunami devastated the coast of northern Sumatra and redirected history. Proceedings of the National Academy of Sciences (PNAS), 116(24), 11679-11686. https://doi.org/10.1073/pnas.1902241116.
- Daruati, D., Handoko, U., Yulianti, M., Ridwansyah, I., Rahmadya, A., & Verawati, D. (2022). Study on the Opportunities Related to Coastal Vul-nerability in Indonesia Using Bibliometric Analysis. International Journal of Environmental Science and Development, 13(5), 184–188. https://doi.org/10.18178/ijesd.2022.13.5.1391.
- Daud, M., Ugliotti, F. M., & Osello, A. (2024). Comprehensive Analysis of the Use of Web-GIS for Natural Hazard Management: A Systematic Review. Sustainability, 16(10). https://doi.org/10.3390/su16104238.
- De Risi, R., Muhammad, A., De Luca, F., Goda, K., & Mori, N. (2022). Dynamic risk framework for cascading compounding climate-geological haz-ards: A perspective on coastal communities in subduction zones. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.1023018.
- Destrayanti, I., Fatmasari, N., Utaminingtyas, B., & Wibowo, H. S. (2023). Tsunami Hazard Mapping and Evacuation Path Determination using field Survey and Geographical Information Systems at Widarapayung Wetan, Cilacap. E3S Web of Conferences, 447. https://doi.org/10.1051/e3sconf/202344701004.
- Dias, N., Haigh, R., Amaratunga, D., & Rahayu, H. (2024). A review of tsunami early warning at the local level - Key actors, dissemination path-ways, and remaining challenges. International Journal of Disaster Risk Reduction, 101, 104195. https://doi.org/10.1016/j.ijdrr.2023.104195.
- Dickson, E., Baker, J. L., Hoornweg, D., & Tiwari, A. (2012). URBAN RISK ASSESSMENTS - Understanding Disaster and Climate Risk in Cities. Wash-ington DC: International Bank for Reconstruction and Development / The World Bank.
- Durap, A., & Balas, C. E. (2024). Towards sustainable coastal management: a hybrid model for vulnerability and risk assessment. Journal of Coastal Conservation, 28(66). https://doi.org/10.1007/s11852-024-01065-y.
- Eckert, S., Jelinek, R., Zeug, G., & Krausmann, E. (2012). Remote sensing-based assessment of tsunami vulnerability and risk in Alexandria, Egypt. Applied Geography, 32(2), 714-723. https://doi.org/10.1016/j.apgeog.2011.08.003.
- El Moussaoui, S., Omira, R., Zaghloul, M. N., El Talibi, H., & Aboumaria, K. (2017). Tsunami hazard and buildings vulnerability along the Northern Atlantic coast of Morocco –the 1755-like tsunami in Asilah test-site. Geoenvironmental Disasters, 4(1). https://doi.org/10.1186/s40677-017-0089-6.
- Fajri, Z., Outiskt, M., Khouyaoui, Y., El Moussaoui, S., El Talibi, H., & Aboumaria, K. (2021). Numerical Simulation of Tsunami Hazards in South Atlantic Coast: Case of the City of Agadir-Morocco: Preliminary Result. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 46(4/W5-2021), 219–223. https://doi.org/10.5194/isprs-Archives-XLVI-4-W5-2021-219-2021.
- Febrina, R., Afriani, L., Susilorini, R. M. I., & Prastio, T. (2020). Vulnerability Assessment of Tsunami-Affected Inundated Area Using Geospatial Analysis Based Tsunami Run-Up Simulation. IOP Conference Series: Materials Science and Engineering, 1062 012036. https://doi.org/10.1088/1757-899X/1062/1/012036.
- Frankenberg, E., Sikoki, B., Sumantri, C., Suriastini, W., & Thomas, D. (2013). Education, Vulnerability, and Resilience after a Natural Disaster. Ecology Social, 18(2). https://doi.org/10.5751/ES-05377-180216.
- Gomez-Zapata, J. C., Brinckmann, N., Harig, S., Zafrir, R., Pittore, M., Cotton, F., & Babeyko, A. (2021). Variable-resolution building exposure modeling for earthquake and tsunami scenario-based risk assessment: An application case in Lima, Peru. Natural Hazards and Earth System Sciences, 21(11), 3599–3628. https://doi.org/10.5194/nhess-21-3599-2021.
- González-Riancho, P., Aliaga, B., Hettiarachchi, S., González, M., & Medina, R. (2015). A contribution to the selection of tsunami human vulnera-bility indicators: Conclusions from tsunami impacts in Sri Lanka and Thailand (2004), Samoa (2009), Chile (2010) and Japan (2011). Natural Hazards and Earth System Sciences, 15(7), 1493–1514. https://doi.org/10.5194/nhess-15-1493-2015.
- Grezio, A., Babeyko, A., Baptista, M. A., Behrens, J., Costa, A., Davies, G., Geist E. L., Glimsdal, S., González, F. I., Griffin J., Harbitz, C. B., LeVeque, R. J., Lorito, S., Løvholt, F., Omira, R., Mueller, C., Paris, R., Parsons, T., Polet, J., Power, W., Selva, J., Sørensen, M. B., & Thio, H. K. (2017). Probabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications. Reviews of Geophysics, 55, 1158–1198. https://doi.org/10.1002/2017RG000579.
- Ghadamode, V., Kondarathi, A., K., Pandey, A. K., & Srivastava, K. (2024). Shoreline and land use–land cover changes along the 2004-tsunami-affected South Andaman coast: understanding changing hazard susceptibility. Natural Hazards Earth System Sciences, 24, 3013–3033. https://doi.org/10.5194/nhess-24-3013-2024.
- Guntur, Sambah, A. B., Miura, F., Fuad, & Arisandi, D. M. (2017). Assessing Tsunami Vulnerability Areas Using Satellite Imagery and Weighted Cell-Based Analysis. International Journal of GEOMATE, 12(34), 115–122. http://dx.doi.org/10.21660/2017.34.2726.
- Haider, R., Ali, S., Hoffmann, G., & Reicherter, K. (2024). Tsunami inundation and vulnerability analysis on the Makran coast, Pakistan. Natural Hazards and Earth System Sciences, 24(9), 3279–3290. https://doi.org/10.5194/nhess-24-3279-2024.
- Hamouda, A., Hassan, M., & El-Gharabawy, S. (2024). Enhancing tsunami resilience and evacuation strategies: A case study of coastal disaster preparedness and heritage protection of the Bibliotheca Alexandrina area. Egyptian Journal of Aquatic Research, 50(3), 366-375. https://doi.org/10.1016/j.ejar.2024.09.001.
- Hanjarwati, A., Wardhana, I. W., & Komalawati. (2024). Disaster risk assessment based on the community’s vulnerability, capacity, and responses in facing an earthquake in the Special Region of Yogyakarta, Indonesia. IOP Conference Series: Earth and Environmental Science, 1313. https://doi.org/10.1088/1755-1315/1313/1/012029.
- Hardiansyah, Mase, L. Z., Fauzi, Y., Edriani, A. F., Anugrah, D. S., & Shelina, A. (2023). Evaluation of The Road Vulnerability Network During the Evacuation Process (A Case Study in A Coastal Area of Bengkulu City, Indonesia). Engineering Journal, 27(10), 81–91. https://doi.org/10.4186/ej.2023.27.10.81.
- Hariyani, S., Susilo, A., Kurniawan, E. B., & Shoimah, F. (2019). Spatial Model of Coastal Community Vulnerability of Puger District to Tsunami Disaster Hazard. IOP Conference Series: Earth and Environmental Science, 328(1). https://doi.org/10.1088/1755-1315/328/1/012053.
- Hayes, J. L., Wilson, T. M., Brown, C., Deligne, N. I., Leonard, G. S., & Cole, J. (2021). Assessing urban disaster waste management requirements after volcanic eruptions. International Journal of Disaster Risk Reduction, 52, 101935. https://doi.org/10.1016/j.ijdrr.2020.101935.
- Hernández-Delgado, E. A. (2023). Coastal Restoration Challenges and Strategies for Small Island Developing States in the Face of Sea Level Rise and Climate Change. Coasts, 4(2), 235-286. https://doi.org/10.3390/coasts4020014.
- Homann, S. Z. (2022). Build Back Better and Long-Term Housing Recovery: Assessing Community Housing Resilience and the Role of Insurance Post Disaster. Sustainability, 14(9). https://doi.org/10.3390/su14095623.
- Honarmand, M., Shanehsazzadeh, A., & Zandi, S. M. (2020). 3D numerical simulation of tsunami generation and propagation, case study: Makran tsunami generation and penetrating in Chabahar Bay. Ocean Engineering, 218, 108109. https://doi.org/10.1016/j.oceaneng.2020.108109.
- Honesti, L., Majid, M. Z. A., Djali, N., & Muchlian, M. (2015). Modeling the potential risk of building vulnerability towards tsunami hazard in Ulak Karang and Pasir Jambak sub-district, Padang. Jurnal Teknologi, 72(4), 41–47. https://doi.org/10.11113/jt.v72.3912.
- Hong, J.-H., & Tsai, C.-Y. (2020). Using 3D webgis to support the disaster simulation, management, and analysis – Examples of Tsunami and flood. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 54(3/W1), 43–50. https://doi.org/10.5194/isprs-archives-XLIV-3-W1-2020-43-2020.
- Huelin, R., Iheanacho, I., Payne, K., & Sandman, K. (2015, May). What’s in a name? Systematic and non-systematic literature reviews, and why the distinction matters. In The Evidence Forum (pp. 34-37).
- Hughes, K. E., Fitzsimons, S. J., & Howarth, J. D. (2024). Lacustrine mass movements in active tectonic settings: Lake tsunami sources in New Zealand's South Island. Geomorphology, 464, 109359. https://doi.org/10.1016/j.geomorph.2024.109359.
- Jevrejeva, S., Calafat, F. M., DeDominicis, M., Hirschi, J. J. ‐M., Mecking, J. V., Polton, J. A., Sinha, B., Wise, A., & Holt, J. (2024). Challenges, ad-vances, and opportunities in regional sea level projections. The role of ocean‐shelf dynamics. Earth's Future, 12(8). https://doi.org/10.1029/2024EF004886.
- Jitt-Aer, K., Wall, G., Jones, D., & Teeuw, R. (2022). Use of GIS and dasymetric mapping for estimating tsunami-affected population to facilitate humanitarian relief logistics: a case study from Phuket, Thailand. Natural Hazard, 113, 185–211. https://doi.org/10.1007/s11069-022-05295-x.
- Jongsoo, P., Hagyu, J., & Junwoo, L. (2024). National Disaster Management and Monitoring Using Satellite Remote Sensing and Geo-Information. Korean Journal of Remote Sensing, 40 (5), 813-832. https://doi.org/10.7780/kjrs.2024.40.5.2.9.
- Joseph, J., Irshad, S. M., & Alex, A. M. (2021). Disaster recovery and structural inequalities: A case study of community assertion for justice. Inter-national Journal of Disaster Risk Reduction, 66, 102555. https://doi.org/10.1016/j.ijdrr.2021.102555.
- Kajitani, Y., Takabatake, D., Yuyama, A., Ishikawa, T., & Kröger, W. (2023). A framework to estimate a long-term power shortage risk following large-scale earthquake and tsunami disasters. PLoS ONE, 18(3 March). https://doi.org/10.1371/journal.pone.0283686.
- Khan, S. M., Shafi, I., Butt, W. H., Diez, I. T., Flores, M. A. L., Galán, J. C., & Ashraf, I. (2023). A Systematic Review of Disaster Management Sys-tems: Approaches, Challenges, and Future Directions. Land, 12(8). https://doi.org/10.3390/land12081514.
- Koshimura, S., Hayashi, S., & Gokon, H. (2014). The impact of the 2011 Tohoku earthquake tsunami disaster and implications to the reconstruc-tion. Soils and Foundations, 54(4), 560–572. https://doi.org/10.1016/j.sandf.2014.06.002.
- Koshimura, S., Moya, L., Mas, E., & Bai, Y. (2020). Tsunami Damage Detection with Remote Sensing: A Review. Geosciences, 10(5). https://doi.org/10.3390/geosciences10050177.
- Krausmann, E., Girgin, S., & Necci, A. (2019). Natural hazard impacts on industry and critical infrastructure: Natech risk drivers and risk manage-ment performance indicators. International Journal of Disaster Risk Reduction, 40, 101163. https://doi.org/10.1016/j.ijdrr.2019.101163.
- Krichen, M., Abdalzaher, M. S., Elwekeild, M., & Foudae, M. M. (2024). Managing natural disasters: An analysis of technological advancements, opportunities, and challenges. Internet of Things and Cyber-Physical Systems, 4, 99-109. https://doi.org/10.1016/j.iotcps.2023.09.002.
- Kumaat, J. C., Kandoli, S. T. B., & Laeloma, F. (2018). Spatial Modeling of Tsunami Impact in Manado City using Geographic Information System. IOP Conference Series: Materials Science and Engineering, 306(1). https://doi.org/10.1088/1757-899X/306/1/012069.
- Kumar, P., Debele, S. E., Sahani, J., Rawat, N., Marti-Cardona, B., Alfieri, S. M., Basu, B., Basu, A. S., Bowyer, P., Charizopoulos, N., Jaakko, J., Loupis, M., Menenti, M., Mickovski, S. B., Pfeiffer, J., Pilla, F., Pröll, J., Pulvirenti, B., Rutzinger, M., Sannigrahi, S., Spyrou, C., Tuomenvirta, H., Vojinovic, Z., & Zieher, T. An overview of monitoring methods for assessing the performance of nature-based solutions against natural haz-ards. Earth-Science Reviews, 217, 103603. https://doi.org/10.1016/j.earscirev.2021.103603.
- Løvholt, F., Kühn, D., Bungum, H., Harbitz, C. B, & Glimsdal, S. (2012). Historical tsunamis and present tsunami hazard in eastern Indonesia and the southern Philippines. Journal of Geophysical Research: Solid Earth, 117(B9). https://doi.org/10.1029/2012JB009425.
- León, J., Gubler, A., & Ogueda, A. (2022). Modelling geographical and built-environment attributes as predictors of human vulnerability during tsunami evacuations: a multi-case-study and paths to improvement. Natural Hazards and Earth System Sciences, 22(9), 2857–2878. https://doi.org/10.5194/nhess-22-2857-2022.
- Li, G., Zhao, J., Murray, V., Song, C., & Zhang, L. (2019). Gap analysis on open data interconnectivity for disaster risk research. Geo-spatial Infor-mation Science, 22 (1), 45-58. https://doi.org/10.1080/10095020.2018.1560056.
- Linardos, V., Drakaki, M., Tzionas, P., & Karnavas, Y. L. (2022). Machine Learning in Disaster Management: Recent Developments in Methods and Applications. Machine Learning & Knowable Extraction, 4(2). https://doi.org/10.3390/make4020020.
- Liu, C. M., Rim, D., Baraldi, R., LeVeque, R. J. (2021). Comparison of Machine Learning Approaches for Tsunami Forecasting from Sparse Observ-tions. Pure and Applied Geophysics, 178, 5129-5153. https://doi.org/10.1007/s00024-021-02841-9.
- Loichinger, E., Samir, K. C., & Lutz, W. (2015). A four-dimensional population module for the analysis of future adaptive capacity in the Phang Nga province of Thailand. Vienna Yearbook of Population Research, 13(1), 263–287. https://doi.org/10.1553/populationyearbook2015s263.
- Lv, Y., & Sarker, M. N. I., (2024). Integrative approaches to urban resilience: Evaluating the efficacy of resilience strategies in mitigating climate change vulnerabilities. Heliyon, 10(6). https://doi.org/10.1016/j.heliyon.2024.e28191.
- Lynett, P. J., Borrero, J., Son, S., Wilson, R., & Miller, K. (2014). Assessment of the tsunami-induced current hazard. Geophysical Research Letters, 41(6), 2048–2055. https://doi.org/10.1002/2013GL058680.
- Ma, C., Qirui, C., & Lv, Y. (2023). “One community at a time”: promoting community resilience in the face of natural hazards and public health challenges. BMC Public Health, 23(2510). https://doi.org/10.1186/s12889-023-17458-x.
- Masuda, H., Sugawara, D., & Goto, K. (2022). To what extent tsunami source information can be extracted from tsunami deposits? Implications from the 2011 Tohoku-oki tsunami deposits and sediment transport simulations. Progress in Earth and Planetary Science, 9(65). https://doi.org/10.1186/s40645-022-00527-x.
- Macabuag, J., Rossetto, T., Ioannou, I., & Eames, I. (2018). Investigation of the effect of debris-induced damage for constructing tsunami fragility curves for buildings. Geosciences (Switzerland), 8(4). https://doi.org/10.3390/geosciences8040117.
- Maiwald, H., & Schwarz, J. (2022). Simulative Flood Damage Modelling Taking Into Account Inundation Level and Flow Velocity: Uncertainties and Strategies for Further Refinement. WIT Transactions on the Built Environment, 208, 27–40. https://doi.org/10.2495/FRIAR220031.
- Makinoshima, F., Oishi, Y., Yamazaki, T., Furumura, T., & Imamura, F. (2021). Early forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks. Nature Communications, 12 (2253). https://doi.org/10.1038/s41467-021-22348-0.
- Marfai, M. A., Sunarto, Khakim, N., Cahyadi, A., Rosaji, F. S. C., Fatchurohman, H., & Wibowo, Y. A. (2018). Topographic data acquisition in tsu-nami-prone coastal area using Unmanned Aerial Vehicle (UAV). IOP Conference Series: Earth and Environmental Science, 148(1). https://doi.org/10.1088/1755-1315/148/1/012004.
- Marfai, M. A., Sunarto, Khakim, N., Fatchurohman, H., Cahyadi, A., Wibowo, Y. A., & Rosaji, F. S. C. (2019). Tsunami hazard mapping and loss estimation using geographic information system in Drini Beach, Gunungkidul Coastal Area, Yogyakarta, Indonesia. E3S Web of Conferences, 76. https://doi.org/10.1051/e3sconf/20197603010.
- Marras, S., & Mandli, K. T. (2020). Modelling and Simulation of Tsunami Impact: A Short Review of Recent Advances and Future Challenges. Geosciences, 11(1). https://doi.org/10.3390/geosciences11010005.
- Mebarki, A., Jerez, S., Prodhomme, G., & Reimeringer, M. (2016). Natural hazards, vulnerability and structural resilience: tsunamis and industrial tanks. Geomatics, Natural Hazards and Risk, 7, 5–17. https://doi.org/10.1080/19475705.2016.1181458.
- Mezei, L., Güneralp, B., & Güneralp, I. (2023). Local participation in mitigation and adaptation to coastal hazards in the U.S.: A critical review with a focus on resettlement. International Journal of Disaster Risk Reduction, 95, 103796. https://doi.org/10.1016/j.ijdrr.2023.103796.
- Morasco, S., Cardoni, A., Noori, A. Z., Kammouh, O., Domaneschi, M., & Cimellaro, G. P. (2021). Integrated platform to assess seismic resilience at the community level. Sustainable Cities and Society, 64, 102506. https://doi.org/10.1016/j.scs.2020.102506.
- Mulia, I., E., Ueda, N., Miyoshi, T., Gusman, A. R., & Satake, K. (2022). Machine learning-based tsunami inundation prediction derived from off-shore observations. Nature Communication, 13 (5489). https://doi.org/10.1038/s41467-022-33253-5.
- Muzani, Mataburu, L. B., & Tafiati. (2024). Vulnerability and tsunami disaster on the west coast Banten province, Indonesia. All Earth, 36(1), 1–12. https://doi.org/10.1080/27669645.2024.2323355.
- Nakai, H., Itatani, T., Kaganoi, S., Okamura, A., Horiike, R., & Yamasaki, M. (2021). Needs of children with neurodevelopmental disorders and geographic location of emergency shelters suitable for vulnerable people during a tsunami. International Journal of Environmental Research and Public Health, 18(4), 1–14. https://doi.org/10.3390/ijerph18041845.
- Nakanishi, H., Wise, S., Suenaga, Y., & Manley, E. (2020). Simulating emergencies with transport outcomes Sim (SETOSim): Application of an agent-based decision support tool to community evacuation planning. International Journal of Disaster Risk Reduction, 49, 101657. https://doi.org/10.1016/j.ijdrr.2020.101657.
- Nurmaya, A., Herbanu, P. S., Nisaa, R. M., Arifati, A., Wardana, R. A., Sahid, Firmansyah, R. A., & Yudhanti, F. Y. (2023). Tsunami Risk Assessment on Public Facilities in Southern Part of Bantul Regency, Yogyakarta. E3S Web of Conferences, 447. https://doi.org/10.1051/e3sconf/202344701015.
- Ogawa, Y., Sekimoto, Y., & Shibasaki, R. (2021). Estimation of earthquake damage to urban environments using sparse modeling. Environment and Planning B: Urban Analytics and City Science, 48(5), 1075–1090. https://doi.org/10.1177/2399808320986560.
- Oh, N., & Lee, J. (2020). Changing landscape of emergency management research: A systematic review with bibliometric analysis. International Journal of Disaster Risk Reduction, 49, 101658. https://doi.org/10.1016/j.ijdrr.2020.101658.
- Orpin, A. R., Rickard, G. J., Gerring, P. K., & Lamarche, G. (2016). Tsunami hazard potential for the equatorial southwestern Pacific atolls of Toke-lau from scenario-based simulations. Natural Hazards and Earth System Sciences, 16(5), 1239–1257. https://doi.org/10.5194/nhess-16-1239-2016
- Paramesti, C. A. (2011). Kesiapsiagaan Masyarakat Kawasan Teluk Pelabuhan Ratu terhadap Bencana Gempa Bumi dan Tsunami. Jurnal Perencanaan Wilayah dan Kota, 22(2), 113–128. https://doi.org/10.5614/jpwk.2011.22.2.3.
- Parisi, F., & Acconcia, E. (2021). Fragility curves for RC framed buildings considering cumulative damage due to earthquake ground motion and slow-moving landslides. COMPDYN Proceedings, 2021-June. https://doi.org/10.7712/120121.8697.18805.
- Patel, V. M., Dholakia, M. B., & Singh, A. P. (2016). Emergency preparedness in the case of Makran tsunami: a case study on tsunami risk visualiza-tion for the western parts of Gujarat, India. Geomatics, Natural Hazards and Risk, 7(2), 826–842. https://doi.org/10.1080/19475705.2014.983188.
- Pitilakis, K., Argyroudis, S., Kakderi, K., & Selva, J. (2016). Systemic Vulnerability and Risk Assessment of Transportation Systems under Natural Hazards Towards More Resilient and Robust Infrastructures. Transportation Research Procedia, 14, 1335–1344. https://doi.org/10.1016/j.trpro.2016.05.206.
- Plevis, V. (2024). AI-Driven Innovations in Earthquake Risk Mitigation: A Future-Focused Perspective. Geosciences, 14(9). https://doi.org/10.3390/geosciences14090244.
- Pradana, M. R., & Dimyati, M. (2024). Tracking Urban Sprawl: A Systematic Review and Bibliometric Analysis of Spatio-Temporal Patterns Using Remote Sensing and GIS. European Journal of Geography, 15(3), 190-203. https://doi.org/10.48088/ejg.m.pra.15.3.190.203.
- Pranantyo, I. R., Heidarzadeh, M., & Cummins, P. R. (2021). Complex tsunami hazards in eastern Indonesia from seismic and non-seismic sources: Deterministic modelling based on historical and modern data. Geoscience Letter, 8(20). https://doi.org/10.1186/s40562-021-00190-y.
- Prasetyo, S. Y. J., Simanjuntak, B. H., Hartomo, K. D., & Sulistyo, W. (2021). Computer model for tsunami vulnerability using sentinel 2a and srtm images optimized by machine learning. Bulletin of Electrical Engineering and Informatics, 10(5), 2821–2835. https://doi.org/10.11591/eei.v10i5.3100.
- Purbani, D., Marzuki, M. I., Ontowirjo, B., Zein, F. M., Tjahjo, D. W. H., Purnamaningtyas, S. E., Akhwady, R., Syam, A. R., Rahman, A., Sugianti, Y., Prihadi, T. H., & Wisha, U. J. (2023). TSUNAMI EVACUATION MODEL IN THE PANIMBANG SUBDISTRICT, BANTEN PROVINCE, INDONESIA: GIS-AND AGENT-BASED MODELING APPROACHES. Geographia Technica, 18(2), 132–148. https://doi.org/10.21163/GT_2023.182.10.
- Rafliana, I., Jalayer, F., Cerase, A., Cugliari, L., Baiguera, M., Salmaniou, D., Necmioğlu, O., Ayerbe, I. A., Lorito, S., Fraser, S., Løvholt, F., Babeyko, A., Gálvez, M. A. S., Selva, J., De Risi, R., Sørensen, M. B., Behrens, J., Quiroga, I. A., Del Zoppo, M., Belliazzi, S., Pranantyo, I. R., Amato, A., & Hancilar, U. (2022). Tsunami risk communication and management: Contemporary gaps and challenges. International Journal of Disaster Risk Reduction, 70, 102771. https://doi.org/10.1016/j.ijdrr.2021.102771.
- Rahman, M. A., & Tanaka, N. (2022). Countermeasure against local scouring and tsunami damage by landward forests behind a coastal embank-ment. Applied Ocean Research, 120, 103070. https://doi.org/10.1016/j.apor.2022.103070.
- Rathnayaka, B., Robert, D., Adikariwattage, V., Siriwardana, C., Meegahapola, L., Setunge, S., & Amaratunga, D. (2024). A unified framework for evaluating the resilience of critical infrastructure: Delphi survey approach. International Journal of Disaster Risk Reduction, 110, 104598. https://doi.org/10.1016/j.ijdrr.2024.104598.
- Rezvani, S. M. H. S., Falcão, M. J., Komljenovic, D., & de Almeida, N. M. (2023). A Systematic Literature Review on Urban Resilience Enabled with Asset and Disaster Risk Management Approaches and GIS-Based Decision Support Tools. Applied Sciences, 13(4). https://doi.org/10.3390/app13042223.
- Re, C. L., Manno, G., Basile, M., Ferrotto, M. F., Cavaleri, L., & Ciraolo, G. (2022). Tsunami Vulnerability Evaluation for a Small Ancient Village on Eastern Sicily Coast. Journal of Marine Science and Engineering, 10(2). https://doi.org/10.3390/jmse10020268.
- Rehman, K., & Cho, Y.-S. (2016). Building damage assessment using scenario based tsunami numerical analysis and fragility curves. Water (Swit-zerland), 8(3). https://doi.org/10.3390/w8030109.
- Ren, Z., Gao, Y., Ji, X., & Hou, J. (2022). Deterministic tsunami hazard assessment and zoning approach using far-field and near-field sources: Study of Cixi County of Zhejiang Province, China. Ocean Engineering, 247, 110487. https://doi.org/10.1016/j.oceaneng.2021.110487.
- Ren, Z., Higuera, P., & Liu, P. L., (2023). On Tsunami Waves Induced by Atmospheric Pressure Shock Waves After the 2022 Hunga Tonga-Hunga Ha'apai Volcano Eruption. Journal of Geophysical Research: Oceans, 128 (4). https://doi.org/10.1029/2022JC019166.
- Ren, Z., Wang, Y., Wang, P., Hou, J., Gao, Y., & Zhao, L. (2020). Numerical study of the triggering mechanism of the 2018 Anak Krakatau tsunami: eruption or collapsed landslide?. Natural Hazard,102, 1-13. https://doi.org/10.1007/s11069-020-03907-y.
- Romanelli, J. P., Gonçalves, M. C. P., de Abreu Pestana, L. F., Soares, J. A. H., Boschi, R. S., & Andrade, D. F. (2021). Four challenges when con-ducting bibliometric reviews and how to deal with them. Environmental Science and Pollution Research, 28, 60448–60458. https://doi.org/10.1007/s11356-021-16420-x.
- Rubin, C. M., Horton, B. P., Sieh, K., Pilarczyk, J. E., Daly, P., Ismail, N, & Parnell, A. C. (2017). Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami. Nature Communication, 8. https://doi.org/10.1038/ncomms16019.
- Rusydy, I., Faustino-Eslava, D. V., Muksin, U., Gallardo-Zafra, R., Aguirre, J. J. C., Bantayan, N. C., Alam, L., & Dakey, S. (2017). Building vulnerabil-ity and human loss assessment in different earthquake intensity and time: A case study of the University of the Philippines, Los Baños (UPLB) Campus. IOP Conference Series: Earth and Environmental Science, 56(1). https://doi.org/10.1088/1755-1315/56/1/012006.
- Šakić Trogrlić, R., van den Homberg, M., Budimir, M., McQuistan, C., Sneddon, A., & Golding, B. (2022). Early Warning Systems and Their Role in Disaster Risk Reduction. In B. Golding (Ed.), Towards the “Perfect” Weather Warning: Bridging Disciplinary Gaps through Partnership and Communication (pp. 11–46). Springer International Publishing. https://doi.org/10.1007/978-3-030-98989-7_2
- Salmanidou, D. M., Ehara, A., Himaz, R., Heidarzadeh, M., & Guillas, S. (2021). Impact of future tsunamis from the Java trench on household welfare: Merging geophysics and economics through catastrophe modelling. International Journal of Disaster Risk Reduction, 61, 102291. https://doi.org/10.1016/j.ijdrr.2021.102291.
- Sambah, A. B., Masnagari, L. M. S., Fuad, M. A. Z., & Intyas, C. A. (2024). Tsunami Run-Up Modelling in Comparison With Coastal Vulnerability Mapping. International Journal of GEOMATE, 27(119), 10–17. https://doi.org/10.21660/2024.119.4000.
- Sambah, A. B., & Miura, F. (2016). Spatial data analysis and remote sensing for observing tsunami-inundated areas. International Journal of Re-mote Sensing, 37(9), 2047–2065. http://dx.doi.org/10.1080/01431161.2015.1136450.
- Sambah, A. B., Miura, F., Sambah, A. B., & Miura, F. (2019). Geo Spatial Analysis for Tsunami Risk Mapping. In Advanced Remote Sensing Technol-ogy for Synthetic Aperture Radar Applications, Tsunami Disasters, and Infrastructure. IntechOpen. https://doi.org/10.5772/intechopen.82665
- Selva, J., Amato, A., Armigliato, A., Basili, R., Bernardi, F., Brizuela, B., Cerminara, M., Vitturi, M. M., Di Bucci, D., Di Manna, P., Ongaro, T. E., La-canna, G., Lorito, S., Løvholt, F., Mangione, D., Panunzi, E., Piatanesi, A., Ricciardi, A., Ripepe, M., Romano, F., Santini, M., Scalzo, A., Tonini, R., Volpe, M., & Zaniboni, F. (2021). Tsunami risk management for crustal earthquakes and non-seismic sources in Italy. La Rivista del Nuovo Cimento, 44, 69–144. https://doi.org/10.1007/s40766-021-00016-9.
- Senjana, S., Handayani, W., & Suprapti, A. (2023). Spatio-Temporal Analysis on Land Use/Land Cover Change in Banda Aceh: A Preliminary Study of Disaster Resilience. IOP Conference Series: Earth and Environmental Science, 1264. http://dx.doi.org/10.1088/1755-1315/1264/1/012011.
- Scala, A., Lorito, S., Sánchez, C. E., Romano, F. Festa, G., Abbate, A., Bayraktar, H. B., Castro, M. J., Macías, J., Gonzalez‐Vida, J. M. (2024). As-sessing the Optimal Tsunami Inundation Modeling Strategy for Large Earthquakes in Subduction Zones. Journal of Geophysical Research: Oceans, 129(9). https://doi.org/10.1029/2024JC020941.
- Scorzini, A. R., Di Bacco, M., Sugawara, D., & Suppasri, A. (2024). Machine learning and hydrodynamic proxies for enhanced rapid tsunami vul-nerability assessment. Communications Earth and Environment, 5(1). https://doi.org/10.1038/s43247-024-01468-7.
- Shafian, S. A., & Hu, D. (2024). Integrating Machine Learning and Remote Sensing in Disaster Management: A Decadal Review of Post-Disaster Building Damage Assessment. Buildings, 14(8). https://doi.org/10.3390/buildings14082344.
- Shen, S., Cheng, C., Yang, J., & Yang, S. (2018). Visualized analysis of developing trends and hot topics in natural disaster research. PLoS ONE, 13(1). https://doi.org/10.1371/journal.pone.0191250.
- Shi, X., Dong, D., Ye, Z., Huang, J., Ying, C., Li, X., Yan, Y., & Ding, Y. (2024). High-resolution numerical modelling reveals tsunami risk hotspots in Xiamen City, China. Frontiers in Marine Science, 11. https://doi.org/10.3389/fmars.2024.1478149.
- Silviana, M. (2020). Tsunami Vulnerability and Risk Assessment of Banda Aceh City through ArcGIS Software. Jurnal Inovasi Teknologi dan Rekayasa, 5(1), 35–43. https://doi.org/10.31572/inotera.Vol5.Iss1.2020.ID100.
- Stigler, S. H., Šakić, R. T., Reiter, K., Ward, P. J., de Ruiter, M. C., Duncan, M. J., Torresan, S., Ciurean, R. Mysiak, J., Stuparu, D., Gottardo, S. (2023). Toward a framework for systemic multi-hazard and multi-risk assessment and management. iScience, 26(5). https://doi.org/10.1016/j.isci.2023.106736.
- Sugandhi, N., Supriatna, Kusratmoko, E., & Rakuasa, H. (2023). Spatial modelling of tsunami hazards and their exposure to settlements in Ambon City. IOP Conference Series: Earth and Environmental Science, 1173(1). https://doi.org/10.1088/1755-1315/1173/1/012013.
- Sugawara, D. (2021). Numerical modeling of tsunami: advances and future challenges after the 2011 Tohoku earthquake and tsunami. Earth-Science Reviews, 214. https://doi.org/10.1016/j.earscirev.2020.103498.
- Tavares, A. O., Barros, J. L., & Santos, A. (2017). Multidimensional Approach for Tsunami Vulnerability Assessment: Framing the Territorial Im-pacts in Two Municipalities in Portugal. Risk Analysis, 37(4), 788–811. https://doi.org/10.1111/risa.12678.
- Thomas, B. E. O., Roger, J., Gunnell, Y. Sabinot, C., Aucan, J. (2021). A low-cost toolbox for high-resolution vulnerability and hazard-perception mapping in view of tsunami risk mitigation: Application to New Caledonia. International Journal of Disaster Risk Reduction, 62, 102350. https://doi.org/10.1016/j.ijdrr.2021.102350.
- Toma-Danila, D., Armas, I., & Tiganescu, A. (2020). Network-risk: An open GIS toolbox for estimating the implications of transportation network damage due to natural hazards, tested for Bucharest, Romania. Natural Hazards and Earth System Sciences, 20(5), 1421–1439. https://doi.org/10.5194/nhess-20-1421-2020.
- Ulza, A., Idris, Y., Asyifa, C. N., & Irvansyah, R. (2023). Closing the Resilience Gap: A Preliminary Study on Establishing the National Fragility Curve Catalog for Multi-Hazard Assessment in Indonesia. E3S Web of Conferences, 447. https://doi.org/10.1051/e3sconf/202344701002.
- United Nations Office for Disaster Risk Reduction and World Meteorological Organization. (2023). Global Status of Multi-Hazard Early Warning Systems. Geneva, Switzerland.
- Utami, A. C., Kurniawan, R., & Fauzan. (2021). Analytical fragility curve development of maternity and children’s M. Djamil Hospital building Padang due to earthquake and tsunami. IOP Conference Series: Earth and Environmental Science, 708(1). https://doi.org/10.1088/1755-1315/708/1/012014.
- Wang, Y. V., & Sebastian, A. (2022). Equivalent hazard magnitude scale. Natural Hazards and Earth System Sciences, 22(12), 4103–4118. https://doi.org/10.5194/nhess-22-4103-2022.
- Wang, Y., Su, H. Y., Ren, Z., & Ma, Y. (2022). Source Properties and Resonance Characteristics of the Tsunami Generated by the 2021 M 8.2 Alaska Earthquake. Journal of Geophysical Research: Oceans, 127(2). https://doi.org/10.1029/2021JC018308.
- Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, E. J., De Ruiter, C. M., Duncan, J. M., Emberson, R., Jenkins, F. S., Kirschbaum, D., Kunz, M., Veldkamp, I. E. T., & Winsemius, C. H. (2020). Review article: Natural hazard risk assessments at the global scale. Natural Hazards and Earth System Sciences, 20(4), 1069–1096. https://doi.org/10.5194/nhess-20-1069-2020.
- Wetty, M. P., & Kusratmoko, E. (2020). Spatial model of vulnerability to tsunami in Buleleng Sub-district. IOP Conference Series: Earth and Envi-ronmental Science, 561(1). https://doi.org/10.1088/1755-1315/561/1/012048.
- Wibowo, G. C. A., Prasetyo, S. Y. J., & Sembiring, I. (2023). Tsunami Vulnerability and Risk Assessment Using Machine Learning and Landsat 8. Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer, 22(2), 365–380. https://doi.org/10.30812/matrik.v22i2.2677.
- Xhafaj, E., Hassan, H. M., Scaini, C., & Peresan, A. (2024). Simulation of large plausible tsunami scenarios associated with the 2019 Durres (Alba-nia) earthquake source and adjacent seismogenic zones. Mediterranean Geoscience Reviews, 6, 197–217. https://doi.org/10.1007/s42990-024-00122-w.
- Wood, N., Jones, J. M., Yamazaki, Y., Cheung, K.-F., Brown, J., Jones, J. L., & Abdollahian, N. (2019). Population vulnerability to tsunami hazards informed by previous and projected disasters: a case study of American Samoa. Natural Hazards, 95(3), 505–528. https://doi.org/10.1007/s11069-018-3493-7.
- Wu, G., & Garlock, M. (2024). Using SPH modeling, investigating the effects of box girder bridge geometry on solitary wave force. Coastal Engi-neering, 187. https://doi.org/10.1016/j.coastaleng.2023.104430.
- Yap, W., Switzer, A. D., Gouramanis, C., Horton, B. P., Marzinelli, E. M., Wijaya, W., Yan, Y. T., Dominey-Howes, D., Labbate, M., Jankaew, K., & Lauro, F. M. (2023). Investigating geological records of tsunamis in Western Thailand with environmental DNA. Marine Geology, 457. https://doi.org/10.1016/j.margeo.2023.106989.
- Yazdani, M., Loosemore, M., Mojtahedi, M., Sanderson, D., & Haghani, M. (2024). Progress and landscape of disaster science: Insights from com-putational analyses. International Journal of Disaster Risk Reduction, 108, 104536. https://doi.org/10.1016/j.ijdrr.2024.104536.
- Zanker, M., Alhasnawi, B. N., Babič, F., Bureš, V., Čech, P. Husáková, M., Mikulecký, P., Nacházel, T., Ponce, D., Iqbal, S., & Sedhom, B. E. (2024). Connecting Soft and Hard: An Integrating Role of Systems Dynamics in Tsunami Modeling and Simulation. Sci, 6(3). https://doi.org/10.3390/sci6030039.
- Zhao, E., Qu, K., Mu, L., Kraatz, S., & Shi, B. (2019). Numerical study on the hydrodynamic characteristics of submarine pipelines under the impact of real-world tsunami-like waves. Water (Switzerland), 11(2). https://doi.org/10.3390/w11020221.