Vol. 16 No. 2 (2025): (Regular Issue in Progress)
Research Article

Integration of Remote Sensing and GIS for Urban Sprawl Monitoring in European Cities

Stavros Kalogiannidis
University of Western Macedonia, Greece
Konstantinos Spinthiropoulos
University of Western Macedonia, Greece
Bio
Dimitrios Kalfas
University of Western Macedonia, Greece
Bio
Fotios Chatzitheodoridis
University of Western Macedonia, Greece
Bio
Fani Tziampazi
University of Western Macedonia, Greece
Bio
Urban Sprawl Levels in Selected European Cities (2000-2023)

Published 2025-04-07

Keywords

  • Urban sprawl,
  • Population dispersion,
  • socio-economic factors,
  • remote sensing,
  • GIS techniques,
  • urban planning,
  • European cities
  • ...More
    Less

How to Cite

Kalogiannidis, Stavros, Konstantinos Spinthiropoulos, Dimitrios Kalfas, Fotios Chatzitheodoridis, and Fani Tziampazi. 2025. “Integration of Remote Sensing and GIS for Urban Sprawl Monitoring in European Cities”. European Journal of Geography 16 (2):75-90. https://doi.org/10.48088/ejg.s.kal.16.2.075.090.
Received 2024-12-20
Accepted 2025-04-05
Published 2025-04-07

Abstract

Urban sprawl still poses a major problem to most European cities as it causes environmental degradation, social and economic unfairness, and inefficient land utilization. This study proposes and evaluates an extensive decision-making framework that facilitates the use of remote sensing and geographic information systems for assessment, analysis, and control of urban sprawl. Satellite data from Sentinel-2 and Landsat-8 were utilized to analyze land cover changes in six European cities, including London, Paris, Madrid, Berlin, Rome, and Athens, that occurred over a period of 23 years, specifically from 2000 to 2023. Supervised classification techniques, namely, Random Forest and Support Vector Machines, and spatial metrics including Shannon’s Entropy, Patch Density, Urban Compactness Ratio, and Buffer analysis were used to assess the level of sprawl. A self-administered questionnaire was completed by 125 urban planners and policymakers to get a quantitative perspective about socio-economic forces and policy efficiency. The study established that there has been extreme urban sprawl with Rome leading at 24% and Berlin at 23%, attributed to population growth, economic development and thin urban planning standards. Furthermore, green space was also reduced by 19.7%, and air pollution rose by 11.2%. Also, an increase in traffic congestion (36%) and housing costs (28%) were other socio-economic issues. The tested decision support framework proved efficient for scenario modeling and predictive spatial analysis for sustainable urban growth. Future literature should add the application of a machine learning approach and artificial intelligence for better classification of land use and quantify the cities’ sprawl.

Highlights:

  • An integrated RS-GIS and machine learning framework to assess urban sprawl patterns across six European cities under varying urban typologies.
  • Combine spatial data with expert survey responses to analyze the influence of policies, socio-economic factors, and infrastructure on urban sprawl.
  • A multi-scalar analysis revealing spatial disparities, infrastructure access gaps, and planning challenges affecting urban expansion across Mediterranean and industrialized cities.
  • Evidence-based insights supporting policymakers and planners in designing sustainable urban development strategies tailored to diverse European urban contexts.

Downloads

Download data is not yet available.

References

  1. Al-Riyami, S. M. K. (2017). Monitoring Urban Growth Using Remote Sensing And GIS: A Case Study of Muscat Governorate [University of Leicester]. https://www.ea.gov.om/media/2pipxygz/monitoring-urban-growth-using-remote-sensing-and-gis-a-case-study-of-muscat-governorate_final-project-moza-al-riyami.pdf
  2. Aleixo, C., Branquinho, C., Laanisto, L., Tryjanowski, P., Niinemets, Ü., Moretti, M., Samson, R., & Pinho, P. (2024). Urban Green Connectivity Assessment: A Comparative Study of Datasets in European Cities. In Remote Sensing (Vol. 16, Issue 5). https://doi.org/10.3390/rs16050771
  3. Barnes, A. P., Islam, M. M., & Toma, L. (2013). Heterogeneity in climate change risk perception amongst dairy farmers: A latent class clustering analysis. Applied Geography, 41, 105–115. https://doi.org/10.1016/j.apgeog.2013.03.011
  4. Bastin, G., Scarth, P., Chewings, V., Sparrow, A., Denham, R., Schmidt, M., O’Reagain, P., Shepherd, R., & Abbott, B. (2012). Separating grazing and rainfall effects at regional scale using remote sensing imagery: A dynamic reference-cover method. Remote Sensing of Environment, 121, 443–457. https://doi.org/10.1016/j.rse.2012.02.021
  5. Brukas, V., & Sallnäs, O. (2012). Forest management plan as a policy instrument: Carrot, stick or sermon? Land Use Policy, 29(3), 605–613. https://doi.org/10.1016/j.landusepol.2011.10.003
  6. Chettry, V. (2022). Geospatial measurement of urban sprawl using multi-temporal datasets from 1991 to 2021: case studies of four Indian medi-um-sized cities. Environmental Monitoring and Assessment, 194(12), 860. https://doi.org/10.1007/s10661-022-10542-6
  7. Costa, D. G., Bittencourt, J. C. N., Oliveira, F., Peixoto, J. P., & Jesus, T. C. (2024). Achieving Sustainable Smart Cities through Geospatial Data-Driven Approaches. In Sustainability (Vol. 16, Issue 2). https://doi.org/10.3390/su16020640
  8. Csomós, G., Szalai, Á., & Farkas, J. Z. (2024). A sacrifice for the greater good? On the main drivers of excessive land take and land use change in Hungary. Land Use Policy, 147, 107352. https://doi.org/10.1016/j.landusepol.2024.107352
  9. Deo, P., Siddiqui, M. A., Ramiz, M., Siddiqui, L., Naqvi, H. R., Shakeel, A., & Dwivedi, D. (2024). Measuring the spatial dynamics of urban sprawl in Jaipur City. GeoJournal, 89(3), 108. https://doi.org/10.1007/s10708-024-11090-x
  10. EEA. (2023). Soil monitoring in Europe – Indicators and thresholds for soil health assessments. https://doi.org/10.2800/956606
  11. Eren, S. G. (2023). Future Cities. In K. C. Çamur & S. G. Eren (Eds.), Architectural Sciences and Recent Approaches and Trends in Urban and Regional Planning (1st ed., pp. 340–420). IKSAD Publishing House.
  12. Feng, L. (2009). Applying remote sensing and GIS on monitoring and measuring urban sprawl. A case study of China. Revista Internacional Sos-tenibilidad, Tecnología y Humanismo, 4, 47–56. https://upcommons.upc.edu/bitstream/handle/2099/8534/feng.pdf
  13. Filepné Kovács, K., Varga, D., Kukulska-Kozieł, A., Cegielska, K., Noszczyk, T., Husar, M., Iváncsics, V., Ondrejicka, V., & Valánszki, I. (2024). Policy instruments as a trigger for urban sprawl deceleration: monitoring the stability and transformations of green areas. Scientific Reports, 14(1), 2666. https://doi.org/10.1038/s41598-024-52637-9
  14. Fuladlu, K. (2024). A Hybrid Method for Measuring Land-cover Transformations: A Study of Famagusta Sprawl. SSRN Electronic Journal, 1–26. https://doi.org/10.2139/ssrn.4935169
  15. Fuladlu, K., Riza, M., & Ilkan, M. (2021). Monitoring Urban Sprawl Using Time-Series Data: Famagusta Region of Northern Cyprus. SAGE Open, 11(2), 21582440211007464. https://doi.org/10.1177/21582440211007465
  16. Gregor, M., Löhnertz, M., Schröder, C., Aksoy, E., Fons, J., Garzillo, C., Wildman, A., Kuhn, S., Prokop, G., & Cugny-Seguin, M. (2018). Similarities and diversity of European cities. In Similarities and diversity of European cities. A typology tool to support urban sustainability. https://www.eionet.europa.eu/etcs/etc-uls/products/etc-uls-reports/etc-uls-report-03-2018-similarities-and-diversity-of-european-cities-a-typology-tool-to-support-urban-sustainability/@@download/file/etc-uls_report_2018-3-citytypology_final.pdf
  17. Guastella, G., Oueslati, W., & Pareglio, S. (2019). Patterns of Urban Spatial Expansion in European Cities. In Sustainability (Vol. 11, Issue 8). https://doi.org/10.3390/su11082247
  18. Guo, F., Schlink, U., Wu, W., & Mohamdeen, A. (2022). Differences in Urban Morphology between 77 Cities in China and Europe. In Remote Sensing (Vol. 14, Issue 21). https://doi.org/10.3390/rs14215462
  19. Hassan, A. H., Ahmed, E. M., Hussien, J. M., Sulaiman, R. bin, Abdulhak, M., & Kahtan, H. (2025). A cyber physical sustainable smart city frame-work toward society 5.0: Explainable AI for enhanced SDGs monitoring. Research in Globalization, 10, 100275. https://doi.org/10.1016/j.resglo.2025.100275
  20. Horn, A., & Van Eeden, A. (2018). Measuring sprawl in the Western Cape Province, South Africa: An urban sprawl index for comparative purpos-es. Regional Science Policy & Practice, 10(1), 15–24. https://doi.org/10.1111/rsp3.12109
  21. Kalfas, D., Kalogiannidis, S., Papadopoulou, C.-I., & Chatzitheodoridis, F. (2024). The value of periurban forests and their multifunctional role: a scoping review of the context of and relevant recurring problems. In M. B. T.-M. C. S. Sahana (Ed.), Remote Sensing and GIS in Peri-Urban Re-search (1st ed., Vol. 11, pp. 329–345). Academic Press. https://doi.org/10.1016/B978-0-443-15832-2.00014-9
  22. Kalogiannidis, S., Kalfas, D., Papadopoulou, C.-I., & Chatzitheodoridis, F. (2024). Perspectives on the role of peri-urban dynamics on environmen-tal sustainability: The case study of Greece. In M. B. T.-M. C. S. Sahana (Ed.), Remote Sensing and GIS in Peri-Urban Research (1st ed., Vol. 11, pp. 597–616). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-443-15832-2.00026-5
  23. Kerekes, A.-H., & Alexe, M. (2019). Evaluating urban sprawl and land-use change using remote sensing, GIS techniques and historical maps. Case study: the city of Dej, Romania. Analele Universităţii Din Oradea, Seria Geografie, 29(2), 52–63. https://doi.org/10.30892/auog.292106-799
  24. Klein, R., Willberg, E., Korpilo, S., & Toivonen, T. (2024). Temporal variation in travel greenery across 86 cities in Europe. Urban Forestry & Urban Greening, 102, 128566. https://doi.org/https://doi.org/10.1016/j.ufug.2024.128566
  25. Krishnaveni, K. S., & Anilkumar, P. P. (2020). Managing urban sprawl using remote sensing and GIS. The International Archives of the Photogram-metry, Remote Sensing and Spatial Information Sciences, XLII(3/W11), 59–66. https://doi.org/10.5194/isprs-archives-XLII-3-W11-59-2020
  26. Lagarias, A., & Sayas, J. (2019). Is there a common typology of urban sprawl in Mediterranean cities? Revue d’Économie Régionale & Urbaine, Octobre(4), 813–850. https://doi.org/10.3917/reru.194.0813
  27. Li, Z., He, W., Cheng, M., Hu, J., Yang, G., & Zhang, H. (2023). SinoLC-1: the first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data. Earth System Science Data, 15(11), 4749–4780. https://doi.org/10.5194/essd-15-4749-2023
  28. Linc, R., Pantea, E., Șerban, E., Ciurba (Pastor), A.-P., & Serban, G. (2023). Hydrochemical and Microbiological Investigations and the Therapeutic Potential of Some Mineral Waters from Bihor County, Romania. In Sustainability (Vol. 15, Issue 21). https://doi.org/10.3390/su152115640
  29. Liu, M., Zhang, C., Sun, X., Zhang, X., Liao, D., Hou, J., Jin, Y., Wen, G., & Jiang, B. (2023). Spatial Differentiation and Driving Mechanisms of Eco-system Service Value Change in Rural Land Consolidation: Evidence from Hubei, China. In Land (Vol. 12, Issue 6). https://doi.org/10.3390/land12061162
  30. Loret, E., Martino, L., Fea, M., & Sarti, F. (2023). Remote Sensing and GIS Techniques for Studying the Large Roman Urban System Expansion during the Last Twenty Years: A Combined Approach. Research Highlights in Mathematics and Computer Science Vol. 7, 7, 133–155. https://doi.org/10.9734/bpi/rhmcs/v7/18867D
  31. Lu, L., Qureshi, S., Li, Q., Chen, F., & Shu, L. (2022). Monitoring and projecting sustainable transitions in urban land use using remote sensing and scenario-based modelling in a coastal megacity. Ocean & Coastal Management, 224, 106201. https://doi.org/https://doi.org/10.1016/j.ocecoaman.2022.106201
  32. Ma, Y.-J., Shi, F.-Z., Hu, X., & Li, X.-Y. (2020). Threshold Vegetation Greenness under Water Balance in Different Desert Areas over the Silk Road Economic Belt. In Remote Sensing (Vol. 12, Issue 15). https://doi.org/10.3390/rs12152452
  33. Magidi, J., & Ahmed, F. (2019). Assessing urban sprawl using remote sensing and landscape metrics: A case study of City of Tshwane, South Africa (1984–2015). The Egyptian Journal of Remote Sensing and Space Science, 22(3), 335–346. https://doi.org/10.1016/j.ejrs.2018.07.003
  34. Mai, G., Yan, B., Janowicz, K., & Zhu, R. (2020). Relaxing Unanswerable Geographic Questions Using A Spatially Explicit Knowledge Graph Embed-ding Model. In P. Kyriakidis, D. Hadjimitsis, D. Skarlatos, & A. Mansourian (Eds.), Geospatial Technologies for Local and Regional Development. AGILE 2019 (pp. 21–39). Springer International Publishing. https://doi.org/10.1007/978-3-030-14745-7_2
  35. Papantoniou, A., Danezis, C., & Hadjimitsis, D. (2024). Geospatial Technology Integration in Smart City Frameworks for Achieving Climate Neu-trality by 2050: A Case Study of Limassol Municipality, Cyprus. Journal of Geographic Information System, 16(01), 44–60. https://doi.org/10.4236/jgis.2024.161004
  36. Pradana, M. R., & Dimyati, M. (2024). Tracking Urban Sprawl: A Systematic Review and Bibliometric Analysis of Spatio-Temporal Patterns Using Remote Sensing and GIS. European Journal of Geography, 15(3), 190–203. https://doi.org/10.48088/ejg.m.pra.15.3.190.203
  37. Ragazou, K., Zournatzidou, G., Sklavos, G., & Sariannidis, N. (2024). Integration of Circular Economy and Urban Metabolism for a Resilient Waste-Based Sustainable Urban Environment. Urban Science, 8(4), 175. https://doi.org/10.3390/urbansci8040175
  38. Resemini, R., Geroldi, C., Capotorti, G., De Toni, A., Parisi, F., De Sanctis, M., Cabai, T., Rossini, M., Vignali, L., Poli, M. U., Lo Piccolo, E., Mariotti, B., Arcidiacono, A., Biella, P., Alghisi, E., Bani, L., Bertini, M., Blasi, C., Buffi, F., … Gentili, R. (2025). Building Greener Cities Together: Urban Af-forestation Requires Multiple Skills to Address Social, Ecological, and Climate Challenges. In Plants (Vol. 14, Issue 3). https://doi.org/10.3390/plants14030404
  39. Shao, Z., Neema S., S., Aleksei, P., Fanan, U., Walter, M., & and Mandela, P. J. (2021). Urban sprawl and its impact on sustainable urban develop-ment: a combination of remote sensing and social media data. Geo-Spatial Information Science, 24(2), 241–255. https://doi.org/10.1080/10095020.2020.1787800
  40. Shehu, P., Rikko, L. S., & Azi, M. B. (2023). Monitoring urban growth and changes in land use and land cover: a strategy for sustainable urban development. International Journal of Human Capital in Urban Management, 8(1), 111–126. https://doi.org/10.22034/IJHCUM.2023.01.09
  41. Soroush, M., Mehrtash, A., Khazraee, E., & Ur, J. A. (2020). Deep Learning in Archaeological Remote Sensing: Automated Qanat Detection in the Kurdistan Region of Iraq. In Remote Sensing (Vol. 12, Issue 3). https://doi.org/10.3390/rs12030500
  42. Souza, J. R. F., Oliveira, S. Z. L. N., & Oliveira, H. (2024). The Impact of Federated Learning on Urban Computing. Journal of Internet Services and Applications, 15(1), 380–409. https://doi.org/10.5753/jisa.2024.4006
  43. Tao, Y., Wang, H., Ou, W., & Guo, J. (2018). A land-cover-based approach to assessing ecosystem services supply and demand dynamics in the rapidly urbanizing Yangtze River Delta region. Land Use Policy, 72, 250–258. https://doi.org/10.1016/j.landusepol.2017.12.051
  44. Tiwari, M., Saxena, A., & Katare, V. (2023). Mapping and evaluation of urban sprawl using an integrated approach of Remote Sensing and GIS Technique (Review). International Journal of Advanced Technology & Engineering Research (IJATER), 2(1), 21–29. http://www.ijater.com/Files/e2212e40-764d-402d-8b77-dbeaf3b5bc6b_IJATER_02_05.pdf
  45. Virtanen, J.-P., Alander, J., Ponto, H., Santala, V., Martijnse-Hartikka, R., Andra, A., & Sillander, T. (2024). Contemporary development directions for urban digital twins. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-4/W, 177–182. https://doi.org/10.5194/isprs-archives-XLVIII-4-W10-2024-177-2024
  46. Yang, Q., Zhang, B., Chen, J., Song, Y., & Shen, X. (2025). Integrating crowdsourced data in the built environment studies: A systematic review. Journal of Environmental Management, 373, 123936. https://doi.org/10.1016/j.jenvman.2024.123936
  47. Younes, A., Ahmad, A., Hanjagi, A. D., & Nair, A. M. (2023). Understanding Dynamics of Land Use & Land Cover Change Using GIS & Change De-tection Techniques in Tartous, Syria. European Journal of Geography, 14(3 SE-Research Article), 20–41. https://doi.org/10.48088/ejg.a.you.14.3.020.041
  48. Zhang, L., Zhang, J., Li, X., Zhou, K., & Ye, J. (2023). The Impact of Urban Sprawl on Carbon Emissions from the Perspective of Nighttime Light Remote Sensing: A Case Study in Eastern China. In Sustainability (Vol. 15, Issue 15). https://doi.org/10.3390/su151511940
  49. Zhang, S., Zhu, H., Zeng, K., Zhang, Y., Jin, Z., Wang, Y., Zhang, R., Jürgen, B., & Liu, M. (2025). From city to countryside: Unraveling the long-term complex effects of urbanization on vegetation growth in China. Journal of Environmental Management, 380, 124975. https://doi.org/10.1016/j.jenvman.2025.124975
  50. Zhu, Q., Meizhi, Z., Pengfei, J., Mingqiang, G., Xun, L., & and Guan, Q. (2024). Measuring the urban sprawl based on economic-dominated per-spective: the case of 31 municipalities and provincial capitals. Geo-Spatial Information Science, 27(4), 1272–1289. https://doi.org/10.1080/10095020.2023.2202201
  51. Ziliaskopoulos, K., & Laspidou, C. (2024). Using remote-sensing and citizen-science data to assess urban biodiversity for sustainable cityscapes: the case study of Athens, Greece. Landscape Ecology, 39(2), 9. https://doi.org/10.1007/s10980-024-01793-4
  52. Zournatzidou, G., Ragazou, K., Sklavos, G., Farazakis, D., & Sariannidis, N. (2025). Digital Transformation and Sustainable HRM: The Challenges for an Eco-Friendly Business Continuity. In K. Ragazou, A. Garefalakis, C. Papademetriou, & A. Samara (Eds.), Sustainability Through Green HRM and Performance Integration (pp. 421–440). IGI Global. https://doi.org/10.4018/979-8-3693-5981-5.ch017